Логические операции. Дизъюнкция, конъюнкция и отрицание

Автор работы: Пользователь скрыл имя, 01 Октября 2015 в 17:24, доклад

Описание работы

Алгебра логики (булева алгебра) – это раздел математики, возникший в XIX веке благодаря усилиям английского математика Дж. Буля. Поначалу булева алгебра не имела никакого практического значения. Однако уже в XX веке ее положения нашли применение в описании функционирования и разработке различных электронных схем. Законы и аппарат алгебры логики стал использоваться при проектировании различных частей компьютеров (память, процессор). Хотя это не единственная сфера применения данной науки.

Содержание работы

Логические операции. Дизъюнкция, конъюнкция и отрицание стр. 3-4
Таблицы истинности стр. 4
Законы алгебры логики стр. 4-5
Логические элементы стр.5-7
Применение логических элементов стр. 7
Список литературы стр.8

Файлы: 1 файл

Содержание.docx

— 247.30 Кб (Скачать файл)

Содержание

  1. Логические операции. Дизъюнкция, конъюнкция и отрицание стр. 3-4
  2. Таблицы истинности                                                                       стр. 4
  3. Законы алгебры логики                                                                   стр. 4-5
  4. Логические элементы                                                                      стр.5-7
  5. Применение логических элементов                                               стр. 7
  6. Список литературы                                                                          стр.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Алгебра логики (булева алгебра) – это раздел математики, возникший в XIX веке благодаря усилиям английского математика Дж. Буля. Поначалу булева алгебра не имела никакого практического значения. Однако уже в XX веке ее положения нашли применение в описании функционирования и разработке различных электронных схем. Законы и аппарат алгебры логики стал использоваться при проектировании различных частей компьютеров (память, процессор). Хотя это не единственная сфера применения данной науки.

Что же собой представляет алгебра логики? Во-первых, она изучает методы установления истинности или ложности сложных логических высказываний с помощью алгебраических методов. Во-вторых, булева алгебра делает это таким образом, что сложное логическое высказывание описывается функцией, результатом вычисления которой может быть либо истина, либо ложь (1, либо 0). При этом аргументы функции (простые высказывания) также могут иметь только два значения: 0, либо 1.

Что такое простое логическое высказывание? Это фразы типа «два больше одного», «5.8 является целым числом». В первом случае мы имеем истину, а во втором ложь. Алгебра логики не касается сути этих высказываний. Если кто-то решит, что высказывание «Земля квадратная» истинно, то алгебра логики это примет как факт. Дело в том, что булева алгебра занимается вычислениями результата сложных логических высказываний на основе заранее известных значений простых высказываний.

Логические операции. Дизъюнкция, конъюнкция и отрицание

Так как же связываются между собой простые логические высказывания, образуя сложные? В естественном языке мы используем различные союзы и другие части речи. Например, «и», «или», «либо», «не», «если», «то», «тогда». Пример сложных высказываний: «у него есть знания и навыки», «она приедет во вторник, либо в среду», «я буду играть тогда, когда сделаю уроки», «5 не равно 6». Как мы решаем, что нам сказали правду или нет? Как-то логически, даже где-то неосознанно, исходя из предыдущего жизненного опыта, мы понимает, что правда при союзе «и» наступает в случае правдивости обоих простых высказываний. Стоит одному стать ложью и все сложное высказывание будет лживо. А вот, при связке «либо» должно быть правдой только одно простое высказывание, и тогда все выражение станет истинным.

Булева алгебра переложила этот жизненный опыт на аппарат математики, формализовала его, ввела жесткие правила получения однозначного результата. Союзы стали называться здесь логическими операторами.

Алгебра логики предусматривает множество логических операций. Однако три из них заслуживают особого внимания, т.к. с их помощью можно описать все остальные, и, следовательно, использовать меньше разнообразных устройств при конструировании схем. Такими операциями являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ). Часто конъюнкцию обозначают &, дизъюнкцию - ||, а отрицание - чертой над переменной, обозначающей высказывание.

При конъюнкции истина сложного выражения возникает лишь в случае истинности всех простых выражений, из которых состоит сложное. Во всех остальных случаях сложное выражение будет ложно.

При дизъюнкции истина сложного выражения наступает при истинности хотя бы одного входящего в него простого выражения или двух сразу. Бывает, что сложное выражение состоит более, чем из двух простых. В этом случае достаточно, чтобы одно простое было истинным и тогда все высказывание будет истинным.

Отрицание – это унарная операция, т.к выполняется по отношению к одному простому выражению или по отношению к результату сложного. В результате отрицания получается новое высказывание, противоположное исходному.

Таблицы истинности

Логические операции удобно описывать так называемыми таблицами истинности, в которых отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний. Простые высказывания обозначаются переменными (например, A и B).

Законы алгебры логики

Для логических величин обычно используются три операции:

  1. Конъюнкция – логическое умножение (И) – and, &, ∧.
  2. Дизъюнкция – логическое сложение (ИЛИ) – or, |, v.
  3. Логическое отрицание (НЕ) – not, ¬.

Логические выражения можно преобразовывать в соответствии с законами алгебры логики:

  1. Законы рефлексивности 
    a ∨ a = a 
    a ∧ a = a
  2. Законы коммутативности 
    a ∨ b = b ∨ a 
    a ∧ b = b ∧ a
  3. Законы ассоциативности 
    (a ∧ b) ∧ c = a ∧ (b ∧ c) 
    (a ∨ b) ∨ c = a ∨ (b ∨ c)
  4. Законы дистрибутивности 
    a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) 
    a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
  5. Закон отрицания отрицания 
    ¬ (¬ a) = a
  6. Законы де Моргана 
    ¬ (a ∧ b) = ¬ a ∨ ¬ b 
    ¬ (a ∨ b) = ¬ a ∧ ¬ b
  7. Законы поглощения 
    a ∨ (a ∧ b) = a 
    a ∧ (a ∨ b) = a

Логические элементы

Логическим элементом называется электрическая схема, выполняющая какую-либо логическую операцию (операции) над входными данными, заданными в виде уровней напряжения, и возвращающая результат операции в виде выходного уровня напряжения. Так как операнды логических операций задаются в двоичной системе счисления, то логический элемент воспринимает входные данные в виде высокого и низкого уровней напряжения на своих входах. Соответственно, высокий уровень напряжения (напряжение логической 1) символизирует истинное значение операнда, а низкий (напряжение логического 0) - ложное. Значения высокого и низкого уровней напряжения определяются электрическими параметрами схемы логического элемента и одинаковы как для входных, так и для выходных сигналов. Обычно, логические элементы собираются как отдельная интегральная микросхема. К числу логических операций, выполняемых логическими элементами относятся конъюнкция (логическое умножение, И), дизъюнкция (логическое сложение, ИЛИ), отрицание (НЕ) и сложение по модулю 2 (исключающее ИЛИ). Рассмотрим основные типы логических элементов.

Элемент И

Логический элемент И выполняет операцию логического умножения (конъюнкция) над своими входными данными и имеет от 2 до 8 входов и один выход (как правило, выпускаются элементы с двумя, тремя, четырьмя и восемью входами). На рисунке изображены условные графические обозначения (УГО) логических элементов И с двумя, тремя и четырьмя входами соответственно. Элементы И обозначаются как NИ, где N - количество входов логического элемента (например, 2И, 3И, 8И и т.д.).

Элемент ИЛИ

Логический элемент ИЛИ выполняет операцию логического сложения (дизъюнкция) над своими входными данными и, также как и логический элемент И, имеет от 2 до 8 входов и один выход. На рисунке изображены УГО логических элементов ИЛИ с двумя, тремя и четырьмя входами соответственно. Элементы ИЛИ обозначаются также, как и элементы И (2ИЛИ, 4ИЛИ и т.д.).

Элемент НЕ (инвертор)

Логический элемент НЕ выполняет операцию логического отрицания над своими входными данными и имеет один вход и один выход. Иногда его называют инвертор, так как он инвертирует входной сигнал.

Элемент И-НЕ

Логический элемент И-НЕ выполняет операцию логического умножения над своими входными данными, а затем инвертирует (отрицает) полученный результат и выдаёт его на выход. Таким образом, можно сказать, что логический элемент И-НЕ - это элемент И с инвертором на выходе.

 

Элемент ИЛИ-НЕ

Логический элемент ИЛИ-НЕ выполняет операцию логического сложения над своими входными данными, а затем инвертирует (отрицает) полученный результат и выдаёт его на выход. Таким образом, можно сказать, что логический элемент ИЛИ-НЕ - это элемент ИЛИ с инвертором на выходе.

Элемент сложения по модулю 2

Этот логический элемент выполняет логическую операцию сложения по модулю 2 и, как правило, имеет 2 входа и один выход. Такой элемент, в основном, используется в схемах аппаратного контроля.

Применение логических элементов

Логические элементы могут использоваться как самостоятельные части схемы, так и входить в состав более сложной цифровой комбинационной схемы или схемы с памятью. Как самостоятельные части схемы, логические элементы могут применяться в качестве управляющей логики какого-либо устройства, а также в качестве генератора прямоугольных импульсов с подключённой ёмкостью или кварцевым резонатором. В качестве комбинационных схем логические элементы используются в составе микросхем БИС и СБИС, а также в дешифраторах и шифраторах, выполненных в виде отдельных микросхем. Также, логические элементы могут входить в состав схем с памятью (триггеры, регистры, счётчики и т.д.), выполненных в виде отдельной микросхемы или в составе других микросхем.

 


Информация о работе Логические операции. Дизъюнкция, конъюнкция и отрицание