Автор работы: Пользователь скрыл имя, 29 Сентября 2013 в 17:40, курсовая работа
В последние десятилетия в мире бурно развивается новая прикладная область математики, специализирующаяся на искусственных нейронных сетях. Актуальность исследований в этом направлении подтверждается массой различных применений нейросетей. Это автоматизация процессов распознавания образов, адаптивное управление, аппроксимация функционалов, прогнозирование, создание экспертных систем, организация ассоциативной памяти и многие другие приложения. С помощью нейросетей можно, например, предсказывать показатели биржевого рынка, выполнять распознавание оптических или звуковых сигналов, создавать самообучающиеся системы, способные управлять автомашиной при парковке или синтезировать речь по тексту.
Введение 3
1.Основные понятия 4
1.1. История нейронных сетей 4
1.2. Аналогия с мозгом 7
1.3. Биологический нейрон 8
1.4. Искусственный нейрон 10
1.5. Обучение искусственных нейронных сетей 19
1.6. Применение нейронных сетей 21
2. Приложение 22
2.1. Интерфейс 22
2.1. Код программы 23
Заключение 26
Список литературы 27
МИНИСТЕРСТВО
ОБРАЗОВАНИЯ И НАУКИ
РОССИЙСКОЙ ФЕДЕРАЦИИ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ НАУК
КУРСОВАЯ РАБОТА
по специальности
на тему: «Нейронные сети»
Оглавление
В последние десятилетия в мире бурно развивается новая прикладная область математики, специализирующаяся на искусственных нейронных сетях. Актуальность исследований в этом направлении подтверждается массой различных применений нейросетей. Это автоматизация процессов распознавания образов, адаптивное управление, аппроксимация функционалов, прогнозирование, создание экспертных систем, организация ассоциативной памяти и многие другие приложения. С помощью нейросетей можно, например, предсказывать показатели биржевого рынка, выполнять распознавание оптических или звуковых сигналов, создавать самообучающиеся системы, способные управлять автомашиной при парковке или синтезировать речь по тексту. В то время как на западе применение НС уже достаточно обширно, у нас это еще в некоторой степени экзотика – российские фирмы, использующие НС в практических целях, наперечет.
Широкий круг задач, решаемый нейронными сетями, не позволяет в настоящее время создавать универсальные, мощные сети, вынуждая разрабатывать специализированные сети, функционирующие по различным алгоритмам. Тем не менее, тенденции развития нейросетей растут с каждым годом.
Изучению человеческого мозга - тысячи лет. С появлением современной электроники, начались попытки аппаратного воспроизведения процесса мышления. Первый шаг был сделан в 1943 г. с выходом статьи нейрофизиолога Уоррена Маккалоха (Warren McCulloch) и математика Уолтера Питтса (Walter Pitts) про работу искусственных нейронов и представления модели нейронной сети на электрических схемах.
1949 г. - опубликована книга Дональда Хебба (Donald Hebb) "Организация поведения", где исследована проблематика настройки синаптических связей между нейронами.
1950-е гг. - появляются программные
модели искусственных
1956 г. - Дартмутский исследовательский институт искусственного интеллекта обеспечил подъем искусственного интеллекта, в частности, нейронных мереж. Стимулирование исследований искусственного интеллекта разделилось на два направления: промышленные применения систем искусственного интеллекта (экспертные системы) и моделирование мозга.
1958 г. - Джон фон Нейман (John fon Neumann)
предложил имитацию простых
1959 г. - Бернард Видроу (Bernard Widrow) и Марсиан Хофф (Marcian Hoff) разработали модели ADALINE и MADALINE (Множественные Адаптивные Линейные Элементы (Multiple ADAptive LINear Elements)). MADALINE действовала, как адаптивный фильтр, устраняющих эхо на телефонных линиях. Эта нейросеть до сих пор в коммерческом использовании.
Нейробиолог Френк Розенблатт (Frank
Rosenblatt) начал работу над перцептроном.
Однослойный перцептрон был построен
аппаратно и считается
Ранние успехи, способствовали преувеличению потенциала нейронных мереж, в частности в свете ограниченной на те времена электроники. Чрезмерное ожидание, процветающее в академическом и техническом мире, заразило общую литературу этого времени. Опасение, что эффект "мыслящей машины" отразится на человеке все время подогревалось писателями, в частности, серия книг Азимова про роботов показала последствия на моральных ценностях человека, в случае возможности интеллектуальных роботов выполнять функции человека.
Эти опасения, объединенные с невыполненными
обещаниями, вызвали множество разочаровани
1982 г. - к возрождению интереса
привело несколько событий.
В то же время в Киото (Япония) состоялась Объединенная американо-японская конференция по нейронным сетям, которые объявили достижением пятой генерации. Американские периодические издания подняли эту историю, акцентируя, что США могут остаться позади, что привело к росту финансирования в области нейросетей.
С 1985 г. Американский Институт Физики начал ежегодные встречи - "Нейронные сети для вычислений".
1989 г. - на встрече "Нейронные
сети для обороны" Бернард
Видров сообщил аудитории о
начале четвертой мировой
1990 г. - Департамент программ
Сегодня, обсуждение нейронных сетей происходят везде. Перспектива их использования кажется довольно яркой, в свете решения нетрадиционных проблем и является ключом к целой технологии. На данное время большинство разработок нейронных мереж принципиально работающие, но могут существовать процессорные ограничения. Исследования направлены на программные и аппаратные реализации нейросетей. Компании работают над созданием трех типов нейрочипов: цифровых, аналоговых и оптических, которые обещают быть волной близкого будущего.
Точная работа мозга человека - все еще тайна. Тем не менее, некоторые аспекты этого удивительного процессора известны. Базовым элементом мозга человека являются специфические клетки, известные как нейроны, способные запоминать, думать и применять предыдущий опыт к каждому действию, что отличает их от остальных клеток тела.
Кора головного мозга человека является плоской, образованной из нейронов поверхностью, толщиной от 2 до 3 мм площадью около 2200 см2, что вдвое превышает площадь поверхности стандартной клавиатуры. Кора главного мозга содержит около 1011 нейронов, что приблизительно равно числу звезд Млечного пути. Каждый нейрон связан с 103 - 104 другими нейронами. В целом мозг человека имеет приблизительно от 1014 до 1015 взаимосвязей.
Сила человеческого ума
Индивидуальный нейрон является сложным, имеет свои составляющие, подсистемы и механизмы управления и передает информацию через большое количество электрохимических связей. Насчитывают около сотни разных классов нейронов. Вместе нейроны и соединения между ними формируют недвоичный, нестойкий и несинхронный процесс, отличающийся от процесса вычислений традиционных компьютеров. Искусственные нейросети моделируют лишь главнейшие элементы сложного мозга, вдохновляющие ученых и разработчиков к новым путям решения проблемы.
Нейрон (нервная клетка) является особой
биологической клеткой, которая
обрабатывает информацию. Она состоит
из тела клетки - сомы (soma), и двух типов
внешних древовидных
Рисунок 1(Биологический нейрон)
Синапс является элементарной структурой
и функциональным узлом между
двумя нейронами (волокно аксона
одного нейрона и дендрит другого).
Когда импульс достигает
Последние экспериментальные исследования доказывают, что биологические нейроны структурно сложнее, чем упрощенное объяснение существующих искусственных нейронов, которые являются элементами современных искусственных нейронных сетей. Поскольку нейрофизиология предоставляет ученым расширенное понимание действия нейронов, а технология вычислений постоянно совершенствуется, разработчики сетей имеют неограниченное пространство для улучшения моделей биологического мозга.
История создания искусственных нейронов уходит своими корнями в 1943 год, когда шотландец МакКаллок и англичан Питтс создалитеорию формальных нейросетей, а через пятнадцать лет Розенблатт изобрёл искусственный нейрон (перцептрон), который впоследствии и лёг в основу нейрокомпьютера.
Несмотря на существенные различия, отдельные типы нейронных сетей обладают несколькими общими чертами.
Во-первых, основу каждой нейросети
составляют относительно простые, в
большинстве случаев –
Рисунок 2(Искусственный нейрон)
Текущее состояние нейрона
(1)
Выход нейрона есть функция его состояния:
y = f(s) (2)
Нелинейная функция f называется активационной и может иметь различный вид, как показано на рисунке 3.
Одной из наиболее распространеных является нелинейная функция с насыщением, так называемая логистическая функция или сигмоид (т.е. функция S-образного вида):
(3)
При уменьшении a сигмоид становится более пологим, в пределе при a=0 вырождаясь в горизонтальную линию на уровне 0.5, при увеличении a сигмоид приближается по внешнему виду к функции единичного скачка с порогом T в точке x=0. Из выражения для сигмоида очевидно, что выходное значение нейрона лежит в диапазоне [0,1]. Одно из ценных свойств сигмоидной функции – простое выражение для ее производной, применение которого будет рассмотрено в дальнейшем.
(4)
Следует отметить, что сигмоидная функция дифференцируема на всей оси абсцисс, что используется в некоторых алгоритмах обучения. Кроме того она обладает свойством усиливать слабые сигналы лучше, чем большие, и предотвращает насыщение от больших сигналов, так как они соответствуют областям аргументов, где сигмоид имеет пологий наклон.
Возвращаясь к общим чертам, присущим всем нейронным сетям, отметим, во-вторых, принцип параллельной обработки сигналов, который достигается путем объединения большого числа нейронов в так называемые слои и соединения определенным образом нейронов различных слоев, а также, в некоторых конфигурациях, и нейронов одного слоя между собой, причем обработка взаимодействия всех нейронов ведется послойно.
В качестве примера простейшей нейросети рассмотрим трехнейронный перцептрон (рис.4), то есть такую сеть, нейроны которой имеют активационную функцию в виде единичного скачка*. На n входов поступают некие сигналы, проходящие по синапсам на 3 нейрона, образующие единственный слой этой нейросети и выдающие три выходных сигнала:
, j=1...3 (5)
Очевидно, что все весовые коэффициенты синапсов одного слоя нейронов можно свести в матрицу W, в которой каждый элемент wij задает величину i-ой синаптической связи j-ого нейрона. Таким образом, процесс, происходящий в НС, может быть записан в матричной форме:
Y=F(XW) (6)
где X и Y – соответственно входной и выходной сигнальные векторы, F(V) – активационная функция, применяемая поэлементно к компонентам вектора V.
Теоретически число слоев и число нейронов в каждом слое может быть произвольным, однако фактически оно ограничено ресурсами компьютера или специализированной микросхемы, на которых обычно реализуется нейросеть. Чем сложнее нейронная сеть, тем масштабнее задачи, подвластные ей.
Выбор структуры нейросети