Автор работы: Пользователь скрыл имя, 29 Января 2013 в 08:03, курсовая работа
Актуальность темы связана с тем, что создание и использование экспертных систем является одним из концептуальных этапов развития информационных технологий. В основе интеллектуального решения проблем в некоторой предметной области лежит принцип воспроизведения знаний опытных специалистов — экспертов. Целью курсовой работы является раскрытие понятия «экспертные системы» и провести обзор существующих экспертных систем.
ВВЕДЕНИЕ 3
1 ЭКСПЕРТНЫЕ СИСТЕМЫ 5
1.1 Назначения и основные свойства экспертных систем 5
1.2 Структура экспертных систем 9
1.3 Классификация экспертных систем 12
2 ОБЛАСТИ ПРИМЕНЕНИЯ ЭКСПЕРТНЫХ СИСТЕМ 16
2.1 Экспертные системы в образовании 16
2.2 Финансовые экспертные системы 19
2.3 Экспертные системы диагностики заболеваний 21
2.4 Военные экспертные системы 24
2.5 Экспертные системы в химии 26
ЗАКЛЮЧЕНИЕ 29
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
Приложение
CОДЕРЖАНИЕ
ВВЕДЕНИЕ
Экспертные системы возникли как значительный практический результат в применении и развитии методов искусственного интеллекта – совокупности научных дисциплин, изучающих методы решения задач интеллектуального (творческого) характера с использованием ЭВМ.
Область ИИ имеет более чем сорокалетнюю историю развития. С самого начала в ней рассматривался ряд весьма сложных задач, которые, наряду с другими, и до сих пор являются предметом исследований: автоматические доказательства теорем, машинный перевод (автоматический перевод с одного естественного языка на другой), распознавание изображений и анализ сцен, планирование действий роботов, алгоритмы и стратегии игр.
Актуальность темы связана с тем, что создание и использование экспертных систем является одним из концептуальных этапов развития информационных технологий. В основе интеллектуального решения проблем в некоторой предметной области лежит принцип воспроизведения знаний опытных специалистов — экспертов.
Экспертные системы – это яркое и быстро прогрессирующее направление в области искусственного интеллекта. Причиной повышенного интереса, который ЭС вызывают к себе на протяжении всего своего существования является возможность их применения к решению задач из самых различных областей человеческой деятельности. Пожалуй, не найдется такой проблемной области, в которой не было бы создано ни одной ЭС или, по крайней мере, такие попытки не предпринимались бы.
Целью курсовой работы является раскрытие понятия «экспертные системы» и провести обзор существующих экспертных систем.
Экспертная система — это совокупность методов и средств организации, накопления и применения знаний для решения сложных задач в некоторой предметной области. Экспертная система достигает более высокой эффективности за счет перебора большого числа альтернатив при выборе решения, опираясь на высококачественный опыт группы специалистов, анализирует влияние большого объема новых факторов, оценивая их при построении стратегий, добавляя возможности прогноза.
Основой экспертной системы является совокупность знаний (базы знаний), структурированных в целях формализации процесса принятия решений.
Экспертные системы
Главным достоинством экспертных систем является возможность накопления знаний и сохранение их длительное время. В отличии от человека к любой информации экспертные системы подходят объективно, что улучшает качество проводимой экспертизы. При решении задач, требующих обработки большого объема знаний, возможность возникновения ошибки при переборе очень мала.
Любая экспертная система должна демонстрировать компетентность, т.е. достигать в конкретной предметной области того же уровня, что и специалисты-эксперты. Недостаточно находить хорошие решения, это надо делать быстро. Системы должны иметь не только глубокое, но и достаточно широкое понимание предмета. Методы нахождения решений проблем достигаются на основе рассуждений, исходящих из фундаментальных принципов в случае некорректных данных или неполных наборов правил. Такие свойства наименее разработаны в компьютерных экспертных системах, но именно они присущи специалистам высокого уровня.
1 ЭКСПЕРТНЫЕ СИСТЕМЫ
1.1 Назначения и основные свойства экспертных систем
В начале 80-х годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название «экспертные системы». Основным назначением ЭС является разработка программных средств, которые при решении задач, трудных для человека, получают результаты, не уступающие по качеству и эффективности решения, решениям получаемым человеком-экспертом. ЭС используются для решения так называемых неформализованных задач, общим для которых является то, что:
Кроме того, неформализованные задачи обладают ошибочностью, неполнотой, неоднозначностью и противоречивостью как исходных данных, так и знаний о решаемой задаче.
Экспертная система - это программное средство, использующее экспертные знания для обеспечения высокоэффективного решения неформализованных задач в узкой предметной области. Основу ЭС составляет база знаний (БЗ) о предметной области, которая накапливается в процессе построения и эксплуатации ЭС. [8, c.126]
Накопление и организация знаний - важнейшее свойство всех ЭС (рис. 1.1.1).
Знания являются явными и доступными, что отличает ЭС от традиционных программ, и определяет их основные свойства, такие, как [18]:
1) Применение для решения
проблем высококачественного
2) Наличие прогностических возможностей, при которых ЭС выдаёт ответы не только для конкретной ситуации, но и показывает, как изменяются эти ответы в новых ситуациях, с возможностью подробного объяснения каким образом новая ситуация привела к изменениям.
3) Обеспечение такого
нового качества, как институциональная
память, за счёт входящей в
состав ЭС базы знаний, которая
разработана в ходе взаимодейст
4) Возможность использования
ЭС для обучения и тренировки
руководящих работников, обеспечивая
новых служащих обширным
Рисунок 1.1.1 – Основные свойства ЭС
В работе ЭС можно выделить два основных режима: режим приобретения знаний и режим решения задачи (режим консультации или режим использования). В режиме приобретения знаний общение с ЭС осуществляет эксперт (при помощи инженера знаний).
Используя компонент приобретения знаний, эксперт описывает проблемную область в виде совокупности фактов и правил. Другими словами, «наполняет» ЭС знаниями, которые позволяют ей самостоятельно решать задачи из проблемной области.
Отметим, что этому режиму при традиционном подходе к программированию соответствуют этапы: алгоритмизации, программирования и отладки, выполняемые программистом. Таким образом, в отличие от традиционного подхода в случае ЭС разработку программ осуществляет не программист, а эксперт, не владеющий программированием.
В режиме
консультаций общение с ЭС
осуществляет конечный
Следует отметить, что в отличие от традиционных программ ЭС при решении задачи не только исполняют предписанную алгоритмом последовательность операций, но и сама предварительно формирует её.
Хорошо построенная
ЭС имеет возможность
Схема работы экспертных систем вынесено в Приложение А.
Особенности ЭС, отличающие их от обычных программ, заключаются в том, что они должны обладать:
1. Компетентностью, а именно:
2. Возможностью к символьным рассуждениям, а именно:
3. Глубиной, а именно:
4. Самосознанием, а именно:
Существует ещё одно важное отличие ЭС. Если обычные программы разрабатываются так, чтобы каждый раз порождать правильный результат, то ЭС разработаны с тем, чтобы вести себя как эксперты. Они, как правило, дают правильные ответы, но иногда, как и люди, способны ошибаться.
Традиционные программы для решения сложных задач, тоже могут делать ошибки. Но их очень трудно исправить, поскольку алгоритмы, лежащие в их основе, явно в них не сформулированы. Следовательно, ошибки нелегко найти и исправить. ЭС, подобно людям, имеют потенциальную возможность учиться на своих ошибках.[12, c.365]
1.2 Структура экспертных систем
Структура экспертной системы включает в себя два основных компонента: базу знаний (хранилище единиц знаний) и программный инструмент доступа и обработки знаний, состоящий из механизмов вывода заключений (решения), приобретения знаний, объяснения получаемых результатов и интеллектуального интерфейса. Причем центральным компонентом экспертной системы является база знаний, которая выступает по отношению к другим компонентам как содержательная подсистема, составляющая основную ценность. [2, с.94]
Рисунок 1.2.1 – Структура экспертных систем
База знаний - это совокупность единиц знаний, которые представляют собой формализованное с помощью некоторого метода представления знаний отражение объектов проблемной области и их взаимосвязей, действий над объектами и, возможно, неопределенностей, с которыми эти действия осуществляются.
В качестве методов представления знаний чаще всего используются правила. Так, правила представляют собой конструкции:
Если < условие >
То <заключение> CF (Фактор определенности) <значение>
В качестве факторов определенности (CF), как правило, выступают либо условные вероятности байесовского подхода (от 0 до 1), либо коэффициенты уверенности нечеткой логики (от 0 до 100).
Интеллектуальный интерфейс. Обмен данными между конечным пользователем и ЭС выполняет программа интеллектуального интерфейса, которая воспринимает сообщения пользователя и преобразует их в форму представления базы знаний и, наоборот, переводит внутреннее представление результата обработки в формат пользователя и выдает сообщение на требуемый носитель. Важнейшим требованием к организации диалога пользователя с ЭС является естественность, которая не означает буквально формулирование потребностей пользователя предложениями естественного языка, хотя это и не исключается в ряде случаев. Важно, чтобы последовательность решения задачи была гибкой, соответствовала представлениям пользователя и велась в профессиональных терминах.
Механизм вывода. Этот программный инструмент получает от интеллектуального интерфейса преобразованный во внутреннее представление запрос, формирует из базы знаний конкретный алгоритм решения задачи, выполняет алгоритм, а полученный результат предоставляется интеллектуальному интерфейсу для выдачи ответа на запрос пользователя.
В основе использования любого механизма вывода лежит процесс нахождения в соответствии с поставленной целью и описанием конкретной ситуации (исходных данных), относящихся к решению единиц знаний (правил, объектов, прецедентов и т.д.) и связыванию их при необходимости в цепочку рассуждений, приводящую к определенному результату. Для представления знаний в форме правил это может быть прямая или обратная цепочка рассуждений.