Автор работы: Пользователь скрыл имя, 13 Октября 2012 в 21:13, курсовая работа
Известно, что основной задачей первых трех десятилетий компьютерной эры являлось развитие аппаратных компьютерных средств. Это было обусловлено высокой стоимостью обработки и хранения данных. В 80-е годы успехи микроэлектроники привели к резкому увеличению производительности компьютера при значительном снижении стоимости.
Основной задачей 90-х годов и начала XXI века стало совершенствование качества компьютерных приложений, возможности которых целиком определяются программным обеспечением (ПО).
ВВЕДЕНИЕ 2
1. БАЗОВЫЕ ОСНОВЫ РАЗРАБОТКИ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ 4
1.1 КЛАССИЧЕСКИЙ ЖИЗНЕННЫЙ ЦИКЛ 5
1.2 МАКЕТИРОВАНИЕ 7
1.3 СТРАТЕГИИ КОНСТРУИРОВАНИЯ ПО 10
1.4. МОДЕЛИ КАЧЕСТВА ПРОЦЕССОВ РАЗРАБОТКИ ПО 12
2. ПРОГРАММНАЯ ИНЖЕНЕРИЯ 16
2.1 РАСПРЕДЕЛЕННОЕ ПРОГРАММИРОВАНИЕ 16
2.2 СРЕДСТВА РАЗРАБОТКИ ПО 19
2.3 ВОПРОСЫ БЕЗОПАСТНОСТИ 22
3. СОВРЕМЕННЫЕ ТЕНДЕНЦИИ РАЗРАБОТКИ ПО 24
3.1 ПРИМЕНЕНИЕ ПАРАЛЛЕЛЬНЫХ АЛГОРИТМОВ 24
3.2 CASE-СИСТЕМЫ 29
3.3 ИННОВАЦИОННЫЕ ВОЗМОЖНОСТИ 33
ЗАКЛЮЧЕНИЕ 39
СПИСОК ЛИТЕРАТУРЫ 43
Та же самая логика, что целью является безопасность, и поэтому простота увеличивает надежность и безопасность, когда система и пользователи в стрессе, применима и к созданию резервных копий. Когда что-то не так, главное - это знать, как откатить систему в нормальное состояние, в котором она была некоторое время назад. Инкрементное резервирование с гибкой стратегией отслеживания изменений дерева каталогов может уменьшить доверие к тому, что все работает нормально, даже когда это так. Или, скорее, уменьшит. Команда, перешедшая к простому тексту, записывающая все на ленту и меняющая ленту каждую ночь, знает, где все это находится, и на этом надежном фундаменте способная достигать прогресса в выполнении настоящей работы, действительно умнее, чем любящая сложности команда, проводящая месяц только в попытках организовать работу.
Делай проще. Никогда не латай ничего - ты никогда не знаешь, нашел ли ты все проблемы. Сотри и загрузи заново. Всегда будь способен переформатировать свой диск, переинсталлировать свои инструменты, восстановить тексты из репозитария, переконфигурировать и перекомпилировать. Это дает полную безопасность и сохраняет все то время, которое ушло бы на суету по поводу вирусов. Кого это волнует?
Один из самых важных вопросов, который нужно задать о новой системе, или даже о старой системе, с которой пришлось столкнуться, - какого вида эта система? Никто не станет даже пытаться расположить колонию хиппи вокруг плаца или военный лагерь в виде хаотически расположенных вигвамов, соединенных тропинками! Любая система может обладать более чем одним признаком из перечисленных ниже, хотя некоторые взаимно исключают друг друга. Эти, вероятно полезные, признаки - грубые категории, встречающиеся на практике. Они не выведены из какой-то лежащей в основе теории. Существуют следующие типы систем:
- Монолитная;
- Клиент-Сервер;
- Интерактивная;
- Пакетная;
- Управляемая событиями;
- Управляемая данными;
- Оппортунистическая;
- Штурманская (Dead reckoning);
- Сходящаяся в одну точку (Convergent);
- На гребне волны (Wavefront);
- Ретроспективная (Retrospective).
Концептуальная целостность
По некоторым причинам существует мнение, что для того, чтобы системы были робастными (устойчивыми к ошибкам), им требуются нормальные режимы, режимы сбоя, в которые они попадают при сбое, и режимы восстановления, в которые они переходят после попадания в режим сбоя для возврата в нормальный режим. Частично это провоцируется потерявшими ориентировку пользователями, которые пытаются описать цели в случае сбоя, но делают это рассуждая о "режимах" системы. Это деликатная область, поскольку при обсуждении сбоя пользователи должны думать о составляющих реальной системы, которые могут давать сбой, и они должны обсуждать сбои заранее, раз они вынуждены подписывать Требования Пользователя, которые потом могут быть использованы как палка, которой их будут бить. Это значит, что они должны пытаться изучить финальную реализацию лучше, чем ее знают сами разработчики, чтобы суметь описать, что нужно делать при сбое компонентов.
Наличие множества режимов для обработки сбоев на самом деле гораздо менее нужно, чем думает большинство людей, а избавление от них очень сильно улучшает управляемость сложностью. Если мы желаем сохранить контроль и понимание наших проектных решений, мы должны минимизировать сложность всего, что мы можем. На стороне победителя в этом уравнении находится плато качества. На стороне проигравшего -- взаимодействие одной сложности с другой сложностью, дающее невообразимый рост пространства состояний системы, называемый "комбинаторным взрывом".
Каждый проектировщик баз
Точно также как важно избегать избыточности представления данных в контексте вашей системы, важно также избегать избыточности представления данных вашей системы в контексте платформы. Это истинно, поскольку из-за сбоев глобальные ресурсы могут оказаться в непредсказуемых состояниях. Проект всегда должен предусматривать освобождение всех системных ресурсов, особенно частично записанных файлов, которые съедают пространство диска, даже если они не нарушают работы системы.
В разных местах разная потребность в безопасности. Для некоторых это неизбежное следствие природы бизнеса. Многие военные и коммерческие операции действительно нуждаются в предотвращении раскрытия того, что происходит. Но многие несуразицы происходят из-за путаницы в понимании назначения безопасности, и это предмет обсуждения этого раздела. Как это было в этой работе уже много раз, ситуации и технологии усиления безопасности проявляются повсюду. Здесь мы сконцентрируемся на некоторых курьезах обычной безопасности.
Во-первых, следует различать требования безопасности продуктов, которые исходят из потребностей пользователя, и безопасности, требующейся собственно в среде разработки. Это может быть взаимосвязано, например, безопасность продукта зависит от конфиденциальности исходного кода, но взаимосвязь не означает эквивалентности. Не добавляйте в продуктах средства "засекречивания" принудительно или по привычке. Так ли необходимо связывать пароль с каждым идентификатором пользователя в вашем продукте? Нужен ли вам идентификатор пользователя вообще? Нельзя ли использовать для доступа к несекретной информации идентификатор "guest", не требующий пароля? Каждый пароль в вашем продукте вы должны запоминать и поддерживать, уменьшая эргономическую живучесть и увеличивая стоимость владения, ведь эти красотки наверняка забудут свои пароли.
Далее, существует два вида угроз безопасности: злонамеренные и по небрежности. Вашему продукту может потребоваться защита от злонамеренных угроз, но если вам требуется защита вашей собственной среды разработки от злонамеренных угроз изнутри (мы предполагаем, что вы растете и у вас уже есть брандмауэр), то у вас гораздо большие проблемы, и они не решаются просто установкой запрета доступа к нескольким файлам. По мере того, как программисты все лучше осваивают персональный послойный процесс, даже эти незначительные ошибки происходят все реже, а разработка совместно используемых мысленных моделей и картостроительный жаргон в команде означают, что неформальный "этикет" разработки уже усвоен, как возглас "Реинициализация тестовой базы данных -- все в порядке?" перед очисткой засоренных тестовых данных. Эти вопросы как элементы этикета -- единственный приемлемый возглас в ненавистных офисах с открытой планировкой, и это единственный разумный довод их существования. Но, тем не менее, это недостаточный довод.
Поэтому не блокируйте вашу среду разработки до состояния, когда изменение хоть чего-нибудь требует присутствия каждого члена команды, чтобы ввести свои пароли. Не создавайте и не приспосабливайте системы управления конфигурацией, которые делают разработчиков беспомощными в 8 часов вечера, когда они все еще на работе, но не могут получить исправляемый файл, чтобы прочитать и разобраться. Это не только напрямую тормозит ваш проект: это также дает печальный эмоциональный опыт, который вы навьючиваете на самое высокомотивированное животное в коммерческом мире - программиста в Режиме Глубокого Хака.
Одним из направлений дальнейшего совершенствования процесса разработки ПО является оптимизация существующих и разработка новых вычислительных алгоритмов. Разработка алгоритмов параллельных вычислений является одним из наиболее перспективных направлений данной области. Разработка алгоритмов параллельных вычислений для решения сложных научно-технических задач часто представляет собой значительную проблему. Для снижения сложности рассматриваемой темы оставим в стороне математические аспекты разработки и доказательства сходимости алгоритмов – эти вопросы выходят за рамки данной работы. С учетом высказанных предположений последующие действия для определения эффективных способов организации параллельных вычислений могут состоять в следующем:
- выполнить анализ имеющихся вычислительных схем и осуществить их разделение (декомпозицию) на части (подзадачи), которые могут быть реализованы в значительной степени независимо друг от друга;
- выделить для сформированного набора подзадач информационные взаимодействия, которые должны осуществляться в ходе решения исходной поставленной задачи;
- определить необходимую (или доступную) для решения задачи вычислительную систему и выполнить распределение имеющего набора подзадач между процессорами системы.
Рис. 5. Общая схема разработки параллельных алгоритмов
При самом общем рассмотрении понятно, что объем вычислений для каждого используемого процессора должен быть примерно одинаков – это позволит обеспечить равномерную вычислительную загрузку (балансировку) процессоров. Кроме того, также понятно, что распределение подзадач между процессорами должно быть выполнено таким образом, чтобы количество информационных связей (коммуникационных взаимодействий) между подзадачами было минимальным.
После выполнения всех перечисленных этапов проектирования можно оценить эффективность разрабатываемых параллельных методов: для этого обычно определяются значения показателей качества порождаемых параллельных вычислений (ускорение, эффективность, масштабируемость). По результатам проведенного анализа может оказаться необходимым повторение отдельных (в предельном случае всех) этапов разработки – следует отметить, что возврат к предшествующим шагам разработки может происходить на любой стадии проектирования параллельных вычислительных схем.
Поэтому часто выполняемым
Чтобы применить получаемый в конечном итоге параллельный метод, необходимо выполнить разработку программ для решения сформированного набора подзадач и разместить разработанные программы по процессорам в соответствии с выбранной схемой распределения подзадач. Для проведения вычислений программы запускаются на выполнение (программы на стадии выполнения обычно именуются процессами), для реализации информационных взаимодействий программы должны иметь в своем распоряжении средства обмена данными (каналы передачи сообщений).
Следует отметить, что каждый процессор обычно выделяется для решения единственной подзадачи, однако при наличии большого количества подзадач или использовании ограниченного числа процессоров это правило может не соблюдаться и, в результате, на процессорах может выполняться одновременно несколько программ (процессов). В частности, при разработке и начальной проверке параллельной программы для выполнения всех процессов может использоваться один процессор (при расположении на одном процессоре процессы выполняются в режиме разделения времени).
Рассмотрев внимательно
Рассмотренная схема проектирования и реализации параллельных вычислений дает способ понимания параллельных алгоритмов и программ. На стадии проектирования параллельный метод может быть представлен в виде графа "подзадачи – сообщения", который представляет собой не что иное, как укрупненное (агрегированное) представление графа информационных зависимостей (графа "операции – операнды"). Аналогично на стадии выполнения для описания параллельной программы может быть использована модель в виде графа "процессы – каналы", в которой вместо подзадач используется понятие процессов, а информационные зависимости заменяются каналами передачи сообщений. Дополнительно на этой модели может быть показано распределение процессов по процессорам вычислительной системы, если количество подзадач превышает число процессоров – см. рис. 6.