Автор работы: Пользователь скрыл имя, 26 Марта 2013 в 18:34, реферат
Развитие средств вычислительной техники, а особенно появление персональных компьютеров привело к созданию нового типа информационно-вычислительных систем под названием локальная вычислительная сеть (ЛВС).
ЛВС нашли широкое применение в системах автоматизированного проектирования и технологической подготовки производства, системах управления производством и технологическими комплексами, в конторских системах, бортовых системах управления и т. д. ЛВС является эффективным способом построения сложных систем управления различными производственными подразделениями. ЛВС интенсивно внедряются в медицину, сельское хозяйство, образование, науку и др.
Протокол Х. 25 позволяет организовать в одной линии до 4096 виртуальных каналов связи. Если протянуть к офису одну выделенную линию. то ее можно использовать для объединения нескольких удаленных офисов, подключения корпоративных информационных ресурсов, доступа к системам электронной почты, базам данным -одновременно. Выделенная линия - это обычная телефонная линия, с которой можно работать на скоростях 9600-28800 бит/с. Более скоростные линии (64 Кбит/с и >) стоят значительно дороже.
Обычно сети Х. 25 строятся на двух типах оборудования - Switch или центр коммутации пакетов (ЦКП) и PAD (hfcket assembler/disassembler сборщик/разработчик пакетов), называемый также пакетным адаптером данных (ПАД), или терминальным концентратором. ПАД служит для подключения к сети Х. 25 оконечных устройств через порты. Примером использования ПАД в корпоративной сети - подключение банкоматов к центральному компьютеру банка. ЦКП- его задача состоит в определении маршрута, т. е. в выборе физических линий и виртуальных каналов в них, по которым будет пересылаться информация. Переход к многопользовательским СУБД - качественно технологический скачок, обеспечивающий деятельность организаций в будущем. Реализация перехода к новой информационной системе (ИС) зависит от используемой и перспективной моделей клиент-сервер.
Модели клиент-сервер- это технология взаимодействия компьютеров в сети. Каждый из компьютеров имеет свое назначение и выполняет свою определенную роль. Одни компьютеры в сети владеют и распоряжаются информационно-вычислительными ресурсами (процессоры, файловая система, почтовая служба, служба печати, база данных), другие имеют возможность обращаться к этим службам, пользуясь их услугами. Компьютер, управляющий тем или иным ресурсом называют сервером этого ресурса, а компьютер, пользующийся им - клиентом. Каждый конкретный сервер определяется видом того ресурса, которым он владеет. Например, назначением сервера баз данных является обслуживание запросов клиентов, связанных с обработкой данных; файловый сервер, илифайл-сервер, распоряжается файловой системой и т. д. Этот принцип распространяется и на взаимодействие программ. Программа, выполняющая предоставление соответствующего набора услуг, рассматривается в качестве сервера, а программы пользующиеся этими услугами, принято называть клиентами. Программы имеют распределенный характер, т. е. одна часть функций прикладной программы реализуется в программе-клиенте, а другая - в программе-сервере, а для их взаимодействия определяется некоторыйпротокол.
Рассмотрим эти функции. Один из основных принципов технологии клиент-сервер заключается в разделении функций стандартного интерактивного приложения на четыре группы, имеющие различную природу.
Первая группа.
Это функции ввода и
Вторая группа- объединяет чисто прикладные функции, характерные для данной предметной области (для банковской системы - открытие счета, перевод денег с одного счета на другой и т. д. ).
Третья группа- фундаментальные функции хранения и управления информационно-вычислительными ресурсами (базами данных, файловыми системами и т. д. ).
Четвертая группа - служебные функции, осуществляющие связь между функциями первых трех групп. В соответствии с этим в любом приложении выделяются следующие логические компоненты:
- компонент представления (presentation), реализующий функции первой группы; - прикладной компонент (business application), поддерживающий функции второй группы;
- компонент доступа
к информационным ресурсам (resource
manager), поддерживающий функции
Различия в реализации технологии клиент-сервер определяются следующими факторами: - видами программного обеспечения, в которые интегрирован каждый из этих компонентов;
- механизмами программного
обеспечения, используемыми
- способом распределения
логических компонентов между
компьютерами в сети; - механизмами,
используемыми для связи
2. модель доступа к удаленным данным (Remote Data Access - RDA); 3. модель сервера баз данных (Data Base Server - DBS);
4. модель сервера приложений (Application Server - AS).
4. 3. 1. Модель файлового сервера. (FS)
является базовой для локальных сетей ПК. До недавнего времени была популярна среди отечественных разработчиков, использовавших такие системы, как FoxPro, Clipper, Clarion, Paradox и т. д.
Одним из компьютеров в сети считается файловым сервером и предоставляет другим компьютерам услуги по обработке файлов. Файловый сервер работает под управлением сетевой операционной системы (Novell NetWare) и играет роль компонента доступа к информационным ресурсам (т. е. к файлам). На других ПК в сети функционирует приложение, в кодах которого совмещены компонент представления и прикладной компонент (рис. 4. 7. ).
Клиент Сервер
Запросы
Компонент Прикладной Компонент доступа к
представления компонент ресурсам
файлы
Рис. 4. 7. Модель файлового сервера
Протокол обмена представляет собой набор вызовов, обеспечивающих приложению доступ к файловой системе на файл-сервере.
К недостаткам технологии данной модели относят низкий сетевой трафик (передача множества файлов, необходимых приложению), небольшое количество операций манипуляции с данными (файлами), отсутствие адекватных средств безопасности доступа к данным ( защита только на уровне файловой системы) и т. д. 4. 3. 2. Модель доступа к удаленным данным (RDA) –
существенно отличается от FS-модели методом доступа к информационным ресурсам. В RDA-модели коды компонента представления и прикладного компонента совмещены и выполняются на компьютере-клиенте. Доступ к информационным ресурсам обеспечивается операторами специального языка (SQL, если речь идет о базах данных) или вызовами функций специальной библиотеки (если имеется специальный интерфейс прикладного программирования - API).
Запросы к информационным ресурсам направляются по сети удаленному компьютеру, который обрабатывает и выполняет их, возвращая клиенту блоки данных (рис. 4. 8).
Клиент Сервер
SQL
Компонент Прикладной Компонент доступа к
представления компонент ресурсам
данные
Рис. 4. 8. Модель доступа к удаленным данным
Говоря об архитектуре клиент-сервер, подразумевают данную модель. Основное достоинство RDA-модели заключается в унификации интерфейса клиент-сервер в виде языка SQL и широком выборе средств разработки приложений. К недостаткам можно отнести существенную загрузку сети при взаимодействии клиента и сервера посредством SQL-запросов; невозможность администрирования приложений в RDA, т. к. в одной программе совмещаются различные по своей природе функции (представления и прикладные).
4. 3. 3. Модель сервера баз данных (DBS)
реализована в некоторых реляционных СУБД (Informix, Ingres, Sybase, Oracle), (рис. 4. 9).
Ее основу составляет механизм хранимых процедур - средство программирования SQL-сервера. Процедуры хранятся в словаре баз данных, разделяются между несколькими клиентами и выполняются на том же компьютере, где функционирует SQL-сервер. В DBS-модели компонент представления выполняется на компьютере-клиенте, в то время как, прикладной компонент оформлен как набор хранимых процедур и функционирует на компьютере-сервере БД. Там же выполняется компонент доступа к данным, т. е. ядро СУБД.
Клиент Вызов Сервер Компонент Прикладной Компонент доступа к
представления компонент SQL ресурсам
Рис. 4. 9. Модель сервера баз данных
Понятие информационного ресурса сужено до баз данных, поскольку механизм хранимых процедур - отличительная характеристика DBS-модели - имеется пока только в СУБД.
Достоинства DBS-модели:
- возможность централизованного
администрирования прикладных
- возможность разделения
процедуры между несколькими
приложениями; - экономия ресурсов
компьютера за счет
- ограниченность средств написания хранимых процедур, представляющих собой разнообразные процедурные расширения SQL, которые уступают по изобразительным средствам и функциональным возможностям в сравнении с языками С или Pascal. Сфера их использована ограничена конкретной СУБД из-за отсутствия возможности отладки и тестирования разнообразных хранимых процедур.
На практике чаще используются смешанные модели, когда целостность базы данных и некоторые простейшие прикладные функции обеспечиваются хранимыми процедурами (DBS-модель), а более сложные функции реализуются непосредственно в прикладной программе, которая выполняется на компьютере-клиенте (RDA-модель). 4. 3. 4. Модель сервера приложений (AS)
представляет собой процесс, выполняемый на компьютере-клиенте, отвечающий за интерфейс с пользователем (т. е. реализует функции первой группы). (рис. 4. 10).
Клиент Сервер Сервер
Компонент API Прикладной
SQL Компонент доступа
Рис. 4. 10. Модель сервера приложений
Прикладной компонент реализован как группа процессов, выполняющих прикладные функции, и называется сервером приложения (Application Server - AS). Доступ к информационным ресурсам осуществляет менеджер ресурсов (например, SQL-сервер). Из прикладных компонентов доступны такие ресурсы как, базы данных, очереди, почтовые службы и др. AS, размещенная на компьютере, где функционирует менеджер ресурсов, избавляет от необходимости направления SQL-запросов по сети, что повышает производительность системы.
Модели RDA и DBS опираются на двухзвенную схему разделения функций: - в RDA-модели прикладные функции отданы программе-клиенту (прикладной компонент сливается с компонентом представления);
- в DBS-модели ответственность
за их выполнение берет на
себя ядро СУБД (прикладной компонент
интегрируется в компонент дост
В AS-модели реализована трехзвенная схема разделения функций. Здесь прикладной компонент выделен как важнейший изолированный элемент приложения. Сравнивая модели, AS обладает наибольшей гибкостью и имеет универсальный характер. Принципы перехода к новой информационной системе.
При переходе к новой информационной системе (ИС) необходимо решить такие вопросы как выбор одной из четырех моделей, компоненты архитектуры ИС и инструментарий перехода.
Наиболее распространенной ИС является FS-модель (примем ее за исходную), а в качестве целевой - RDA-модель (наиболее распространена и относительно проста). На практике наблюдаются и другие схемы перехода ( FS-->DBS, RDA--->DBS, RDA-->AS, FS-->AS). Наиболее типичный случай это FS-->RDA, это переход от локальных сетей ПК к архитектуре систем с сервером баз данных. Следующий шаг - определение компонентов архитектуры системы, имеющей в своей основе RDA-модель -компьютер-клиент и сервер баз данных. Проблема заключается в выборе аппаратного и базового программного обеспечения этих компонентов.
На сегодняшний день используются ПК на базе процессоров 486 или Pentium под управлением ОС/2 MS Windows (распространенность, популярность, большое число приложений, широкий набор активно используемых русифицированных продуктов). Самое важное достоинство MS Windows - множество средств быстрой разработки приложений, работающих с SQL-ориентированными СУБД, и доступность этих средств для отечественных пользователей.
Говоря о сервере БД, необходимо упомянуть, что это должен быть мощный компьютер, снабженный высокоскоростными надежными механизмами дисковой памяти большой емкости и системой архивирования на магнитных лентах. Его работа должна осуществляться под управлением многозадачной многопользовательской ОС, поддерживающей промышленные стандарты.
Для RDA-модели
характерны два ключевых
- ПК на базе процессоров
486/Pentium под управлением ОС MS Windows;
- высокопроизводительный RISC-компьютер
(фирм Sun, Hewiett-Packard, IBM) под управлением соответствующе
4. 4. Технология работы
в среде распределенной
Одной из важнейших сетевых технологий является распределенная обработка данных, позволяющая повысить эффективность удовлетворения информационной потребности пользователя и, обеспечить гибкость и оперативность принимаемых им решений. Достоинствами распределенной обработки информации является: - большое число взаимодействующих между собой пользователей; - устранение пиковых нагрузок с централизованной базы данных за счет распределения обработки и хранения локальных баз данных на разных ЭВМ; - возможность доступа пользователя к вычислительным ресурсам сети ЭВМ; - обеспечение обмена данными между удаленными пользователями. При распределенной обработке производится работа с базой, т. е. представление данных, их обработка, работа с базой на логическом уровне осуществляется на компьютере клиента, а поддержание базы в актуальном состоянии - на сервере. При наличии распределенной базы данных база размещается на нескольких серверах. В настоящее время созданы базы данных по всем направлениям человеческой деятельности: экономической, финансовой, кредитной, статистической, научно-технической, маркетинга, патентной информации, электронной документации и т. д.
Создание распределенных баз данных (РБД) было вызвано двумя тенденциями обработки данных, с одной стороны - интеграцией, а с другой децентрализацией.
Интеграция подразумевает централизованное управление и ведение баз данных. Децентрализация обеспечивает хранение данных в местах их возникновения или обработки, при этом скорость обработки повышается, стоимость снижается, увеличивается степень надежности системы.
Информация о работе Основы сетевых информационных технологий