Автор работы: Пользователь скрыл имя, 08 Сентября 2014 в 20:10, доклад
Персональный компьютер или компьютер (от англ. computer или персональный компьютер — «вычислитель») — вычислительная машина, предназначенная для личного использования, цена, размеры и возможности которого удовлетворяют запросы большинства людей.
Основное употребление термина было введёно в конце 1970-х годов компанией Apple Computer для своего компьютера Apple II и впоследствии перенесёно на компьютеры IBM PC.
Гр. 3-Д-42
Ст-ка С.Б. Файзулина
Сообщение на тему:
«Персональный компьютер. Устройства, входящие в состав персонального компьютера»
Общие сведения и характеристики
Персональный компьютер или компьютер (от англ. computer или персональный компьютер — «вычислитель») — вычислительная машина, предназначенная для личного использования, цена, размеры и возможности которого удовлетворяют запросы большинства людей.
Основное употребление термина было введёно в конце 1970-х годов компанией Apple Computer для своего компьютера Apple II и впоследствии перенесёно на компьютеры IBM PC.
Некоторое время персональным компьютером называли любую машину, использующую процессоры Intel и работающую под управлением операционных систем DOS, OS/2 и первых версий Windows. С появлением других процессоров, поддерживающих работу перечисленных программ, таких, как AMD, Cyrix (ныне VIA), название стало иметь более широкую трактовку.
Курьёзным фактом стало
отрицание принадлежности к
К важнейшим техническим характеристикам персонального компьютера относятся:
1. разрядность - важнейшая характеристика компьютера, измеряется в битах; она показывает - сколько двоичных разрядов (битов) информации обрабатывается (или передается) за один такт работы микропроцессора, а также - сколько двоичных разрядов может быть использовано для адресации оперативной памяти; компьютеры могут быть соответственно 8-ю, 16-, 32- и 64-разрядными;
2. тактовая частота – сколько элементарных операций (тактов) выполняет микропроцессор в одну секунду;
3. емкость оперативной памяти, измеряется в Мегабайтах и поставляется в виде модулей, имеющих 2, 4, 8, 16, 32, 64, 128, 256 и более Мбайт (разрабатываются модули емкостью 1Гбайт);
4. емкость внешней дисковой памяти, измеряется в Мегабайтах, Гигабайтах и Терабайтах;
5. тип дисплея и видео карты, обеспечивающих вывод графической информации в режимах:
- VGA – 650 X 480 пикселей,
- SVGA – 800 X 600, 1024 X 768, 1240 X 1024 и более пикселей;
6. количество цветов – монохромные (черно-белые) и цветные, обеспечивающие 16, 256, 16 млн. и более цветов;
Пиксель – это неделимая точка на экране, которая изменяет яркость и цвет (если дисплей цветной). Чем больше пикселей, тем выше качество изображения на экране дисплея.
Производительность компьютера, измеряемая, в первом приближении, в тысячах операций/сек, миллионах операций/сек и миллиардах операций/сек, зависит от используемого в компьютере микропроцессора и других узлов ее определяющих – винчестера, оперативной памяти, объема видеопамяти и т.д. Производительность этих узлов определяется быстродействием, величина которого обратно пропорциональна производительности и измеряется в мили-, микро- и наносекундах, имеющих размерность соответственно 1/1000, 1/1000000 и 1/1000000000 сек.
Быстродействие – это время отклика, приходящееся на одну операцию. Для винчестеров оно составляет 8-16 и более миллисекунд, для оперативной памяти – 8-70 наносекунд.
Производительность компьютера, таким образом, определяется интегрированным показателем, включающим все указанные выше показатели составляющих узлов, и измеряется также в единицах MIPS. Требования к методике ее определения оговорены рядом международных стандартов, используемых для тестирования на стандартных задачах, включающих работу с графикой, видео, компьютерными играми.
Устройство и принцип действия ЭВМ
На разных этапах развития техники и технологии компьютеры назывались по-разному: арифметическо-логическое устройство (АЛУ), программируемое электронно-вычислительное устройство (ПЭВМ или ЭВМ), вычислительная машина, компьютер.
Основные принципы построения логической схемы и структура вычислительной машины, изложенные выдающимся математиком Джоном фон Нейманом, реализованы в первых двух поколениях ЭВМ. Классическая архитектура ЭВМ, построенная по принципу фон Неймана (фон-неймановская архитектура) и реализованная в вычислительных машинах первого и второго поколений содержит следующие основные блоки:
Внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком. Например, накопитель на магнитных дисках относится к внешней памяти; устройством ввода является клавиатура, а монитор и принтер — устройства вывода. Причем если монитор можно отнести к устройствам отображения информации, то принтер — типичное печатающее устройство.
Взаимодействие основных устройств компьютера реализуется в определенной последовательности. В память компьютера вводится программа с помощью какого-либо внешнего устройства. Память компьютера состоит из некоторого числа пронумерованных ячеек. В каждой ячейке могут находиться или обрабатываемые данные, или инструкции программ. Номер (адрес) очередной ячейки памяти, из которой будет извлечена следующая команда программы, указывается специальным устройством — счетчиком команд в управляющем устройстве.
Управляющее устройство считывает содержимое ячейки памяти, где находится первая инструкция (команда) программы, и организует ее выполнение. Как правило, после выполнения одной команды управляющее устройство начинает выполнять команду из ячейки памяти, которая находится непосредственно за ячейкой, где содержится только что выполненная команда.
Управляющее устройство выполняет инструкции программы автоматически и может обмениваться информацией с оперативным запоминающим устройством и внешними устройствами компьютера. Поскольку внешние устройства работают значительно медленнее, чем остальные части компьютера, управляющее устройство может приостанавливать выполнение программы до завершения операции ввода-вывода с внешним устройством. Все результаты выполненной программы должны быть выведены на внешние устройства компьютера, после чего компьютер переходит в режим ожидания каких-либо сигналов от внешних устройств.
Схема устройства современных компьютеров несколько отличается от приведенной выше. Например, арифметическо-логическое и управляющее устройства объединены в единое устройство — центральный процессор — CPU (Central Processing Unit).
Появление ЭВМ третьего поколения было обусловлено переходом от транзисторов к интегральным микросхемам. В них не только были значительно уменьшены размеры базовых функциональных узлов, но и появилась возможность существенно повысить быстродействие процессора. При этом возникло противоречие между высокой скоростью обмена информацией внутри ЭВМ и медленной работой устройств ввода-вывода. Решение проблемы было найдено путем освобождения центрального процессора от функций обмена и передачей их специальным электронным схемам управления работой внешних устройств. Такие схемы имели различные названия: каналы обмена, процессоры ввода-вывода, периферийные процессоры. В последнее время все чаще используется термин «контроллер внешнего устройства», или «контроллер».
Контроллер можно представить как специализированный процессор, управляющий работой какого-либо внешнего устройства по специальным встроенным программам обмена. Например, контроллер дисковода (накопителя на магнитных дисках) обеспечивает позиционирование головки, чтение или запись информации. Результаты выполнения каждой операции заносятся во внутренние регистры памяти контроллера и могут быть в дальнейшем прочитаны центральным процессором. Центральный процессор(CPU), в свою очередь, выдает задание на выполнение контроллеру. Дальнейший обмен информацией может происходить под руководством контроллера, без участия CPU. Наличие таких интеллектуальных контроллеров — внешних устройств стало важной отличительной чертой ЭВМ третьего и четвертого поколений. Для связи между отдельными функциональными узлами ЭВМ используется общая магистраль — шина, состоящая из трех частей: шины данных, шины адреса и шины управления.
Следует отметить, что в некоторых моделях компьютеров шины данных и адреса объединены: на шину сначала выставляется адрес, а потом данные. Сигналы по шине управления определяют, для какой цели используется шина в каждый конкретный момент.
Такая открытость архитектуры ЭВМ позволяет пользователю свободно выбирать состав внешних устройств, т. е. конфигурировать компьютер.
Основные устройства компьютера
Процессор, или микропроцессор, является основным устройством ЭВМ и представляет собой функционально законченное устройство обработки информации. Он предназначен для выполнения вычислений по хранящейся в запоминающем устройстве программе и обеспечения общего управления ЭВМ. Быстродействие ЭВМ в значительной мере определяется скоростью работы процессора.
Память ЭВМ содержит обрабатываемые данные и выполняемые программы, поступающие через устройство ввода-вывода. Память представляет собой сложную структуру, построенную по иерархическому принципу, состоящую из запоминающих устройств различных типов. Функционально она делится на две части — внутреннюю и внешнюю.
Внутренняя память — это запоминающее устройство, напрямую связанное с процессором и предназначенное для хранения выполняемых программ и данных, непосредственно участвующих в вычислениях. Обращение к внутренней памяти ЭВМ осуществляется с высоким быстродействием, но она имеет ограниченный объем, определяемый системой адресации машины. Внутренняя память, в свою очередь, делится на оперативную и постоянную (ПЗУ) память.
Постоянная память обеспечивает хранение и выдачу информации. Содержимое постоянной памяти заполняется при изготовлении ЭВМ и не подлежит изменению в обычных условиях эксплуатации. В постоянной памяти хранятся часто используемые (универсальные) программы и данные, некоторые программы операционной системы, программы тестирования оборудования ЭВМ и др. При выключении питания содержимое постоянной памяти сохраняется. Такой вид памяти называется ROM (Read Only Memory — память только для чтения), или постоянное запоминающее устройство. Значительная часть программ, хранящихся в ROM, связана с обслуживанием ввода-вывода, поэтому ее называют ROM BIOS (Basic Input-Output System — базовая система ввода-вывода).
Оперативная память, по объему составляющая большую часть внутренней памяти, служит для приема, хранения и выдачи информации. При выключении питания содержимое оперативной памяти в большинстве случаев теряется. Эта память называется оперативной, поскольку работает так быстро, что процессору практически не приходится ждать при чтении данных из памяти или записи в нее. Оперативная память обозначается RAM (Random Access Memory — память с произвольным доступом). Объем установленной в компьютере оперативной памяти определяет, с каким программным обеспечением можно на нем работать. При недостаточном объеме оперативной памяти многие программы либо не будут работать совсем, либо будут работать крайне медленно.
Кэш-память - сверхбыстродействующая память, обеспечивающая ускорение доступа к оперативной памяти на быстродействующих компьютерах. Она располагается между микропроцессором и оперативной памятью и хранит копии наиболее часто используемых участков оперативной памяти. При обращении микропроцессора к памяти сначала производится поиск данных в кэш-памяти. Поскольку время доступа к кэш-памяти в несколько раз меньше, чем к обычной памяти, а в большинстве случаев необходимые микропроцессору данные уже содержатся в кэш-памяти, среднее время доступа к памяти уменьшается.
CMOS-RAM — участок памяти для хранения параметров конфигурации компьютера. Называется так в связи с тем, что эта память обычно выполняется по технологии CMOS, обладающей низким энергопотреблением. Содержимое CMOS-RAM не измеяется при выключении электропитания компьютера. Эта память располагается на контроллере периферии, для электропитания которого используются специальные аккумуляторы. Для изменения параметров конфигурации компьютера в BIOS содержится программа настройки конфигурации компьютера Setup.
Видеопамять в IBM PC-совместимых компьютерах — память, используемая для хранения изображения, выводимого на экран монитора. Эта память обычно входит в состав видеоконтроллера — электронной схемы, управляющей выводом изображения на экран монитора.
Внешняя память предназначена для размещения больших объемов информации и обмена ею с оперативной памятью. Для построения внешней памяти используют энергонезависимые носители информации (диски и ленты), которые являются переносными. Емкость внешней памяти практически не имеет ограничений, а для обращения к ней требуется больше времени, чем к внутренней. Внешнее запоминающее устройство (ВЗУ) по принципам функционирования разделяются на устройства прямого доступа (накопители на магнитных и оптических дисках) и устройства последовательного доступа (накопители на магнитных лентах). Устройства прямого доступа обладают большим быстродействием, поэтому они являются основными внешними запоминающими устройствами, постоянно используемыми в процессе функционирования компьютера. Устройства последовательного доступа используются в основном для резервирования информации.
Устройства ввода-вывода служат для обеспечения общения пользователя с ЭВМ и относятся к периферийным, или внешним устройствам.
Необходимыми устройствами ввода-вывода являются монитор, клавиатура, мышь.
Монитор принимает изображение от системного блока. Его экран является рабочим полем. С помощью клавиатуры в компьютер вводятся любые тексты, символы, подаются команды и осуществляется управление работой компьютера. Мышь — средство управления курсором на экране монитора.
Информация о работе Персональный компьютер. Устройства, входящие в состав персонального компьютера