Применение нейронной сети к идентификации пользователя

Автор работы: Пользователь скрыл имя, 01 Июля 2013 в 17:55, дипломная работа

Описание работы

Разработчики традиционных устройств идентификации уже столкнулись с тем, что стандартные методы во многом устарели. Про-блема, в частности, состоит в том, что общепринятое разделение методов контроля физического доступа и контроля доступа к инфор-мации более несостоятельно. Ведь для получения доступа к серверу иногда совсем не обязательно входить в помещение, где он стоит. Причиной тому - ставшая всеобъемлющей концепция распределенных вычислений, объединяющая и технологию клиент-сервер, и Интернет. Для решения этой проблемы требуются радикально новые методы, основанные на новой идеологии. Проведенные исследования показывают, что ущерб в случаях несанкционированного доступа к данным компаний может составлять миллионы долларов.

Содержание работы

Введение 7
1 Анализ предметной области 8
1.1 Задачи системы ограничения доступа 10
1.2 Технические средства формирования аудиоданных 17
1.3 Основы биометрической идентификации 19
1.4 Характеристика существующих аналогичных систем 22
1.5 Возможность использования нейросетей для построения системы распознавания речи 27
1.6 Система распознавания речи как самообучающаяся система 29
2 Постановка задачи 30
3 Общее описание системы 31
3.1 Описание структурной схемы разрабатываемой САПР 33
3.2 Описание схемы работы системы разрабатываемой подсистемы САПР 35
4 Описание видов обеспечений 36
4.1 Описание математического обеспечения 36
4.2 Описание технического обеспечения 60
4.3 Описание информационного обеспечения 61
4.4 Описание лингвистического обеспечения 66
4.5 Описание методического обеспечения 71
4.6 Тестирование программного обеспечения 73


5 Вопросы охраны труда 77
5.1 Введение в охрану труда 77
5.2 Неблагоприятные факторы и средства защиты от них 78
5.3 Классификация объекта по взрывной, взрывопожарной и пожарной опасности 80
5.4 Электробезопасность 81
5.5 Расчёт заземляющего контура 82
5.6 Производственное освещение 84
5.7 Гигиена труда 92
6. Технико-экономическое обоснование проекта 93
6.1 Персонал. орагнизационная структура. 95
6.2 Сроки реализации проекта. календарный график проекта. планирование работ по проекту с использованием сетевого графика 95
6.3 Оценка экономической эффективности от внедрения проекта 98
6.4 Расчет единовременных затрат 99
6.5 Расчет стоимости одного машино-часа работы комплекса технических средств САПР 101
6.6 Расчет предустановочных затрат 104
6.7 Затраты на внедрение аналогичных систем. 104
6.8 Расчет годовых текущих издержек на разработку проекта 106
6.9 Сводная таблица технико-экономических показателей разработки САПР 108
6.10 Выводы 108
Заключение 109
Список используемых источников 110

Файлы: 1 файл

diplom.doc

— 3.16 Мб (Скачать файл)

Существующие  сегодня системы распознавания голоса основываются на сборе всей доступной (порой даже избыточной) информации, необходимой для распознавания пользователя.

Вместо этого  проводится процесс, первым шагом которого является первоначальное трансформирование вводимой информации для сокращения обрабатываемого объема так, чтобы ее можно было бы подвергнуть компьютерному анализу. Следующим этапом является спектральное представление речи, получившееся путем преобразования Фурье. Результат преобразования Фурье позволяет не только сжать информацию, но и дает возможность сконцентрироваться на важных аспектах речи, которые интенсивно изучались в сфере экспериментальной фонетики. Спектральное представление достигнуто путем использования широко-частотного анализа записи.

Хотя спектральное представление речи очень полезно, необходимо помнить, что изучаемый сигнал весьма разнообразен.

Разнообразие  возникает по многим причинам, включая:

    • различия человеческих голосов;
    • уровень речи говорящего;
    • вариации в произношении;
    • нормальное варьирование движения артикуляторов (языка, губ, челюсти, нёба).

Для устранения негативного эффекта влияния  варьирования голосового тракта на процесс распознавания речи  было использовано множество методов. Наиболее удачные формы трансформации, использованной для сокращения различий, были впервые представлены Сакоя & Чибо и назывались динамичными искажениями (dynamic time warping). Техника динамичного искажения используется для временного вытягивания и сокращения расстояния между искаженным спектральным представлением и шаблоном для говорящего. Использование данной техники дало улучшении точного распознавания (~20-30%). Метод динамичного искажения используют практически все коммерчески доступные системы распознавания, показывающие высокую точность сообщения при использовании. Вначале сигнал преобразовывается в спектральное представление, где определяется немногочисленный, но высокоинформативный набор параметров. Затем определяются конечные выходные параметры для варьирования голоса(следует отметить, что данная задача не является тривиальной) и производится нормализация для составления шкалы параметров, а также для определения ситуационного уровня речи. Вышеописанные измененные параметры используются затем для создания шаблона. Шаблон включается в словарь, который характеризует произнесение звуков при передаче информации говорящим, использующим эту систему. Далее в процессе распознавания новых речевых образцов (уже подвергшихся нормализации и получивших свои параметры), эти образцы сравниваются с шаблонами, уже имеющимися в словаре, используя динамичное искажение и похожие метрические измерения.

1.5 Возможность использования нейросетей  для построения системы распознавания речи

Классификация - это одна из основных для нейросетей задач. Причем нейросеть может выполнять классификацию даже при обучении без учителя (правда, при этом образующиеся классы не имеют смысла, но ничто не мешает в дальнейшем ассоциировать их с другими классами, представляющими другой тип информации – фактически наделить их смыслом). Любой речевой сигнал можно представить как вектор в каком-либо параметрическом пространстве, затем этот вектор может быть запомнен в нейросети. Одна из моделей нейросети, обучающаяся без учителя – это самоорганизующаяся карта признаков Кохонена. В ней для множества входных сигналов формируется нейронные ансамбли, представляющие эти сигналы. Этот алгоритм обладает способностью к статистическому усреднению, т.е. решается проблема с вариативностью речи. Как и многие другие нейросетевые алгоритмы, он осуществляет параллельную обработку информации, т.е. одновременно работают все нейроны. Тем самым решается проблема со скоростью распознавания – обычно время работы нейросети составляет несколько итераций.

Далее, на основе нейросетей легко строятся иерархические  многоуровневые структуры, при этом сохраняется их прозрачность (возможность их раздельного анализа). Так как фактически речь является составной, т.е. разбивается на фразы, слова, буквы, звуки, то и систему распознавания речи логично строить иерархическую.

Наконец, ещё  одним важным свойством нейросетей является гибкость архитектуры. Под этим может быть не совсем точным термином я имею в виду то, что фактически алгоритм работы нейросети определяется её архитектурой. Автоматическое создание алгоритмов – это мечта уже нескольких десятилетий. Но создание алгоритмов на языках программирования пока под силу только человеку. Конечно, созданы специальные языки, позволяющие выполнять автоматическую генерацию алгоритмов, но и они не намного упрощают эту задачу. А в нейросетях генерация нового алгоритма достигается простым изменением её архитектуры. При этом возможно получить совершенно новое решение задачи. Введя корректное правило отбора, определяющее, лучше или хуже новая нейросеть решает задачу, и правила модификации нейросети, можно в конце концов получить нейросеть, которая решит задачу верно. Все нейросетевые модели, объединенные такой парадигмой, образуют множество генетических алгоритмов. При этом очень четко прослеживается связь генетических алгоритмов и эволюционной теории (отсюда и характерные термины: популяция, гены, родители-потомки, скрещивание, мутация). Таким образом, существует возможность создания таких нейросетей, которые не были изучены исследователями или не поддаются аналитическому изучению, но тем не менее успешно решают задачу.

1.6 Система распознавания речи  как самообучающаяся система

С целью изучения особенностей самообучающихся систем модели распознавания и синтеза речи были объединены в одну систему, что позволило наделить её некоторыми свойствами самообучающихся систем. Это объединение является одним из ключевых свойств создаваемой модели. Что послужило причиной этого объединения?

Во-первых, у  системы присутствует возможность совершать действия (синтез) и анализировать их (распознавание), т.е. свойство (2). Во-вторых, присутствует свойство (1), так как при разработке в систему не закладывается никакая информация, и возможность распознавания и синтеза звуков речи – это результат обучения.

Преимуществом полученной модели является возможность  автоматического обучения синтезу. Механизм этого обучения описывается далее.

Ещё одной  очень важной особенностью является возможность перевода запоминаемых образов в новое параметрическое пространство с гораздо меньшей размерностью. Эта особенность на данный момент в разрабатываемой системе реализована и на практике проверена. Я постараюсь кратко изложить её суть.

Входной сигнал задается вектором первичных признаков  в N-мерном пространстве. Для хранения такого сигнала необходимо N элементов. При этом на этапе разработки мы не знаем специфики сигнала или она настолько сложна, что учесть её затруднительно. Это приводит к тому, что представление сигнала, которое мы используем, избыточно. Далее предположим, что у нас есть возможность синтезировать такие же сигналы (т.е. синтезировать речь), но при этом синтезируемый сигнал является функцией вектора параметров в M-мерном пространстве, и M<<N (действительно, число параметров модели синтеза речи намного меньше числа первичных признаков модели распознавания речи). Но тогда мы можем запоминать входной сигнал не по его первичным признакам в N-мерном пространстве, а по параметрам модели синтеза в M-мерном пространстве. Возникает вопрос: а как переводить сигнал из одного параметрического пространства в другое? Есть все основания предполагать, что это преобразование можно осуществить при помощи довольно простой нейросети. Более того, по моему мнению, такой механизм запоминания работает в реальных биологических системах, в частности, у человека.

 

2 ПОСТАНОВКА  ЗАДАЧИ

 

 

В результате разработки подсистемы САПР защиты от несанкционированного доступа и учитывая требования, которые должны быть предъявлены к разрабатываемой подсистеме САПР, ставится задача:

1) Разработать структурную схему подсистемы САПР, отражающую состав технических средств, программного, математического, информационного и методического обеспечений, применяемых при реализации зашиты от несанкционированного доступа на основе спектрального анализа голоса пользователя;

2) Разработать схему работы системы, реализующую собой последовательность действий при процессе разработки системы от защиты несанкционированного доступа;

3) Разработать математическое обеспечение проектируемого программного обеспечения, а также алгоритмы применения математического обеспечения и задач оптимизации;

4) Разработать структуру информационного обеспечения подсистемы САПР, а также программу контроля и управления информационными потоками в виде базы данных;

5) Разработать программное обеспечение САПР для реализации диалога ЭВМ и пользователя. К ПО САПР предъявляются следующие требования:

    • удобство пользования входным языком САПР, этот  язык необходимо оформить в виде "меню" и "заполнение бланков";
    • диалог с пользователем вести в виде "меню" и "заполнение бланка";
    • соответствие современным стандартам организации диалога.

6) Разработать комплекс программных средств для реализации этапов процесса проектирования и получения проектной документации. В этом разделе необходимо:

    • обеспечить реализацию всех программных алгоритмов, входящих в различные подсистемы;
    • обеспечить правильное взаимодействие всех подсистем САПР.

   3 ОБЩЕЕ ОПИСАНИЕ СИСТЕМЫ

 

 

Разрабатываемая подсистема САПР является обслуживающим  инструментом для систем автоматизированного проектирования.

Качество  и современность проектируемой  подсистемы должно обеспечиваться развитием  математической модели анализатора  голоса. Как открытая и развивающаяся система, подсистем САПР предоставляет пользователю  средства и возможность изменения отдельных её компонентов.

Любая САПР состоит  из подсистем, которые являются её неотъемлемой частью. Подсистема САПР представляет собой законченный функциональный блок, имеющий свой неповторимый комплекс средств (программное, лингвистическое, методическое, техническое обеспечения или другие виды обеспечения) и выполняющий определённые функции, возложенные на него разработчиком системы. По назначению подсистемы САПР подразделяют на проектирующие и обслуживающие. Примером обслуживающих систем могут служить подсистемы защиты от несанкционированного доступа, автоматизированного ввода  информации, подготовки проектной документации, графическую подсистему и т.д. В отличие от проектирующих подсистем, предназначенных в основном для расчёта, обслуживающие подсистемы предназначены для поддержания их работоспособности.

Реально, САПР представляет собой комплекс технических  средств (КТС), размещённый на нескольких автоматизированных рабочих местах (АРМ), соединённых в локальную  вычислительную сеть (ВС). На одном АРМ возможно совмещение нескольких подсистем, что уменьшает количество используемой вычислительной техники.

В результате анализа, для данной системной области  было выбрано устройство КТС САПР, основанное на двух АРМ, как самый оптимальный вариант. Использование одной единицы вычислительной техники не рационально в силу того, что данная машина будет слишком загружена как расчётами, так и поддержанием работоспособности самой системы, т.е. её обслуживанием. Выделение трёх рабочих мест повлечёт за собой простой вычислительной техники и увеличение средств на создание САПР, что также недопустимо.

Разделение  функциональных обязанностей по АРМ  будет следующим. Одна из станций будет являться информационно-обслуживающей, т.е. будет заниматься вопросами хранения исходных данных, вывода документации и информационным обслуживанием.

Вторая станция  будет являться рабочим местом оператора  и на ней будет установлена программа защиты от несанкционированного доступа.

Таким образом, АРМ1 будет состоять из рабочей подсистемы и информационной подсистемы. Более подробно вышеозначенные подсистемы будут рассмотрены в пунктах 3.1 и 3.2.

3.1 Описание структурной схемы  разрабатываемой САПР

Как уже отмечалось выше, любая САПР состоит из нескольких подсистем, различающихся по своему функциональному назначению. Исходя из анализа области проектирования, в разрабатываемой САПР были выделены следующие подсистемы:

  • подсистема регистрации пользователя в системе;
  • подсистема подготовки и вывода документации;
  • подсистема определения настройки параметров;
  • подсистема обслуживания;
  • информационная подсистема;
  • подсистема визуализации;
  • подсистема авторизации пользователя.

Структурная схема САПР приведена в приложении А. Рассмотрим подробнее задачи, решаемые каждой подсистемой, и средства их реализации.

Подсистема регистрации пользователей, как следует из названия, предназначена для регистрации пользователей в системе. Добавление нового пользователя реализуется при помощи диалоговых языков проектирования, а в частности, диалог типа «заполнение бланков» с элементами диалога типа «меню», а так же, как альтернатива. Подсистема добавления пользователей сохраняет настройки и образцы голоса в БД системы.

Информация о работе Применение нейронной сети к идентификации пользователя