Автор работы: Пользователь скрыл имя, 30 Апреля 2014 в 22:01, дипломная работа
Целью дипломного проекта является организация корпоративной компьютерной сети.
Для решения поставленной цели в работе решаются следующие задачи:
• Выбор СКС, топологии и оборудования;
• Выбор способа управления сетью;
• Выбор оборудования для монтажа ЛВС;
• Рассмотрение вопросов безопасности сети;
• Рассмотрение условий эксплуатации сети.
Необходимо разработать рациональную, гибкую структурную схему сети предприятия, выбрать аппаратную конфигурацию сервера, а так же проработать вопросы обеспечения необходимого уровня защиты данных.
ВВЕДЕНИЕ ……………………………………………………………………..6
ГЛАВА 1. АНАЛИТИЧЕСКИЙ ОБЗОР ЛОКАЛЬНЫХ СЕТЕЙ……………8
1.1 Обзор существующих принципов построения сетей ………………….....8
1.1.1 Понятие «локальная вычислительная сеть» …………....................8
1.1.2 Классификация ЛВС………………………………………………....9
1.1.2.1 По расстоянию между узлами……………………………… ...9
1.1.2.2 По топологии………………………………………………......10
1.1.2.3 По способу управления…………………………………….....10
1.1.2.4 По методу доступа…………………………………………. …11
1.1.3 Требования к ЛВС ………………………………………………….12
1.1.4 Технологии ЛВС ……………………………………………………14
1.2 Общие сведения по СКС ………………………………………………......15
1.2.1 Определение структурированной кабельной системы …………...15
1.2.2 Топология СКС………………………………………………………15
1.2.3 Хронология развития стандартов СКС ……………………………15
1.2.4 Витая пара………………………………………………………… ..21
1.2.5 Волоконно-оптический кабель…………………………………….24
1.2.6 Беспроводные сети ………………………………………………....27
1.2.7 Сравнительные характеристики различных архитектур СКС…...27
1.2.8 Подсистемы СКС……………………………………………………29
1.2.9 Технические помещения …………………………………………..31
1.3 Коммутационное оборудование ……………………………………….....32
1.3.1 Рабочее место ………………………………………………………32
1.3.2 Телекоммуникационный шкаф …………………………………...33
1.3.3 Коммутационные блоки..…………………………………………..35
1.3.4 Коммутационные панели (пэтч-панели).………………………....36
1.3.5 Пэтч-корды……………………………………………………….....39
1.3.6 Коннекторы……………………………………………………….. .41
1.3.6.1 Кабельные коннекторы ……………………………………....41
1.3.6.2 Модульные коннекторы ……………………………………...41
1.4 Типы устройств Fast Ethernet (Gigabit Ethernet) ……………………….42
1.5 Функциональное соответствие видов коммуникационного оборудования уровням модели OSI …………………………………………46
1.6 Вывод по главе 1 ………………………………………………………….48
ГЛАВА 2. ТЕХНИЧЕСКОЕ ЗАДАНИЕ …………………………………….49
2.1 Проектирование структурированной кабельной системы (СКС) и локальной вычислительной сети (ЛВС) Администрации морского порта «Калининград». …………………………………………….49
2.1.1Общие сведения. …………………………………………………...49
2.1.2Назначение и цели выполнения работ. ……………………………50
2.1.3 Объект, в котором должна быть выполнена работа…………….. 50
2.1.4 Технические требования к проектируемой системе……………. 51
2.1.5 Локальная вычислительная сеть. …………………………………57
2.1.6 Подсистема контроля доступа к среде передачи данных
(СПД) ЛВС……………………………………………………………….57
2.1.7 Подсистема мониторинга и управления
сетевым активным оборудованием ЛВС. ………………………………57
2.2 Монтаж структурированной кабельной системы (СКС) и
локальной вычислительной сети (ЛВС)
Администрации морского порта «Калининград»……………………………58
2.2.1 Общие сведения. ……………………………………………………58
2.2.2 Назначение и цели выполнения работ……………………………. 59
2.2.3 Технические требования к монтажу структурированной
кабельной системы (СКС) и локальной вычислительной
сети (ЛВС) Администрации морского порта «Калининград». ………...59
2.2.4 Состав и содержание работ…………………………………………62
2.3. Вывод по главе 2. ………………………………………………………….63
ГЛАВА 3. ПРОЕКТИРОВАНИЕ ЛВС НА БАЗЕ СКС
АДМИНИСТРАЦИИ КАЛИНИНГРАДСКОГО МОРСКОГО ПОРТА……64
3.1Выбор структурированной кабельной системы…………………………..64
3.2Выбор топологии. ………………………………………………………….65
3.3Выбор способа управления сетью. ……………………………………….70
3.4Выбор комплектующих. …………………………………………………..71
3.4.1Активное сетевое оборудование…………………………………...71
3.4.1.1 Сервера. ……………………………………………………….71
3.4.1.2 ИБП. …………………………………………………………...73
3.4.1.3 Хранилище. …………………………………………………...73
3.4.1.4 Коммутатор (Switch)………………………………………….74
3.4.1.5 Маршрутизатор (Router)…………………………………..….77
3.4.1.6 Консоль. ………………………………………………………78
3.4.2 Пассивное оборудование…………………………………………..79
3.4.3 Система охлаждения……………………………………………….81
3.5Построение технической модели. ………………………………………..82
3.6Расчет полезной пропускной способности сети………………………....89
3.7Защита информации. ………………………………………………………91
3.8Тестирование. ……………………………………………………………...95
3.9 Вывод по главе 3. …………………………………………………………97
ГЛАВА 4. ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКАЯ ЧАСТЬ…………..98
4.1 Технико-экономическое обоснование целесообразности
проектирования ЛВС. ………………………………………………………...98
4.1.1 Экономическая часть. ……………………………………………..99
4.1.1.1 Затраты на основные и вспомогательные материалы. …….99
4.1.1.2 Затраты на комплектующие изделия. ……………………...100
4.1.2 Расчет общей сметы затрат на проектирование
и монтаж ЛВС. ………………………………………………………….101
4.1.3 Оценка экономической эффективности
проектируемой ЛВС…………………………………………………….101
4.2 Эксплуатация системы. ……………………………………………….....102
4.2.1 Условия эксплуатации. ………………………………………….102
4.2.2 Обеспечение пожаробезопасности. …………………………….103
4.2.3 Состав обслуживающего персонала. …………………………...105
4.3 Вывод по главе 4. ……………………………………………………….106
ПРИЛОЖЕНИЯ. ……………………………………………………………107
ЗАКЛЮЧЕНИЕ. …………………………………………………………….110
БИБЛИОГРАФИЧЕСКИЙ СПИСОК. …………………………………….112
Волокна оптимизированы для работы на определенных длинах волн. Например, можно достичь потерь в 1 дБ/км для многомодового волокна 50/125 мкм на длине волны 1300 нм, и менее 3 дБ/км (50%-е потери мощности) для того же волокна на 850 нм. Эти два волновых региона, - 850 и 1300 нм, являются областями наиболее часто определяемыми для рабочих характеристик оптических волокон и используются современными коммерческими приемниками и передатчиками. Кроме того, одномодовые волокна оптимизированы для работы в регионе 1550 нм. Оптические потери пропорциональны только расстоянию.
Потери на микроизгибах. Без специальной защиты оптическое волокно подвержено потерям оптической мощности вследствие микроизгибов. Микроизгибы – это микроскопические искажения волокна, вызываемые внешними силами, которые приводят к потере оптической мощности из ядра. Для предотвращения возникновения микроизгибов применяются различные типы защиты волокна.
Одномодовое волокно обычно используется с лазерными источниками благодаря своей высокой спектральной чистоте. Для обеспечения эффективного функционирования таких систем требуются прецизионные коннекторы и муфты.
Волокна с градиентным показателем преломления имеют гораздо большую полосу, чем волокна со ступенчатым показателем преломления. По волокну с градиентным показателем преломления с полосой 600 МГц-км можно передавать сигнал с модуляцией 20 МГц на расстояние до 30 км. Стоимость такого стеклянного волокна является одной из самых низких. Малые потери мощности передаваемого сигнала плюс большая полоса позволяют использовать его для монтажа локальных сетей.
Беспроводные компьютерные сети – это технология, позволяющая создавать вычислительные сети, полностью соответствующие стандартам для обычных проводных сетей (например, Ethernet), без использования кабельной проводки. В качестве носителя информации в таких сетях выступают радиоволны СВЧ-диапазона.
Беспроводные сети используются там, где кабельная проводка затруднена или невозможна. Сеть, развернутая в соответствии со стандартом “RadioEthernet”, представляет собой аналог обычной кабельной сети Ethernet с коллизионным механизмом доступа к среде передачи данных. Разница состоит только в характере этой среды. Radio Ethernet полностью обеспечивает все потребности беспроводной передачи данных внутри помещений.
Наиболее распространенными технологиями беспроводных сетей являются WiFi и WiMAX – это современные беспроводные технологии соединения компьютеров в локальную сеть и подключения их к Internet.
Беспроводные сети особенно эффективны на предприятиях, где сотрудники активно перемещаются по территории во время рабочего дня с целью обслуживания клиентов или сбора информации.
1.2.7 Сравнительные характеристики различных архитектур СКС
Существуют два варианта архитектуры проводки:
Архитектура иерархической звезды может применяться как для группы зданий, так и для одного отдельно взятого здания.
Архитектура иерархической звезды обеспечивает максимальную гибкость управления и максимальную способность адаптации системы к новым приложениям.
Архитектура одноточечного администрирования разработана для максимальной простоты управления. Обеспечивая прямое соединение всех рабочих мест с главным кроссом, она позволяет управлять системой из одной точки, оптимальной для расположения централизованного активного оборудования. Администрирование в одной точке обеспечивает простейшее управление цепями, возможное благодаря исключению необходимости кроссировки цепей во многих местах. Архитектура одноточечного администрирования не применяется для группы зданий.
Каждая архитектура имеет свои преимущества (см. Таблицу 1.2), которые следует иметь в виду при выборе кабельной системы.
Таблица 1.2. Преимущества архитектуры проводки.
Преимущества архитектуры проводки |
Иерархическая звезда |
Одноточечное администрирование |
Наиболее гибкое управление |
X |
|
Наибольшая способность к адаптации |
X |
|
Централизованное управление |
X | |
Распределенное оборудование |
X |
|
Централизованное оборудование |
X | |
Наиболее гибкое использование активного оборудования |
X |
|
Простота технического обслуживания |
X | |
Полное соответствие стандартам |
X |
X при длинах до 100 м |
В основу любой структурированной кабельной системы положена древовидная топология, которую иногда называют также структурой иерархической звезды. Узлами структуры являются коммутационное оборудование различного вида (в соответствии с терминологией стандарта ISO/ IEC 11801 дистрибьютор – distributor), которое обычно устанавливается в технических помещениях и соединяется друг с другом и с информационными розетками на рабочих местах электрическими и оптическими кабелями.
Основой для применения именно иерархической звездообразной топологии является возможность ее использования для поддержки работы всех основных сетевых приложений
Из данных таблицы табл. 1.3 следует вывод о том, что топология рассматриваемого вида является той платформой, которая обеспечивает функционирование современных средств передачи данных.
Таблица 1.3. Логическая и физическая топология современных сетей передачи данных.
Протокол |
Логическая топология |
Физическая топология |
Token Ring |
Кольцо |
Кольцо, звезда |
High Speed Token Ring |
Кольцо |
Кольцо, звезда |
FDDI |
Кольцо |
Кольцо, звезда |
Ethernet |
Шина |
Шина, звезда |
Fast Ethernet |
Шина |
Звезда |
Gigabit Ethernet |
Шина |
Звезда |
ATM |
Виртуальный канал |
Кольцо, звезда |
1.2.8 Подсистемы СКС
В самом общем случае СКС, согласно международному стандарту ISO/IEC 11801, включает в себя три подсистемы:
• подсистема внешних магистралей (campus backbone cabling) или по терминологии некоторых СКС европейских производителей первичная подсистема, состоит из внешних магистральных кабелей между КВМ и КЗ, коммутационного оборудования в КВМ и КЗ, к которому подключаются внешние магистральные кабели, и коммутационных шнуров и/или перемычек в КВМ. Подсистема внешних магистралей является основой для построения сети связи между компактно расположенными на одной территории зданиями (campus). Если СКС устанавливается автономно только в одном здании, то подсистема внешних магистралей отсутствует;
• подсистема внутренних магистралей (building backbone cabling), называемая в некоторых СКС вертикальной или вторичной подсистемой, содержит проложенные между КЗ и КЭ внутренние магистральные кабели, подключенное к ним коммутационное оборудование в КЗ и КЭ, а также коммутационные шнуры и/или перемычки в КЗ. Кабели рассматриваемой подсистемы фактически связывают между собой отдельные этажи здания и/или пространственно разнесенные помещения в пределах одного здания. Если СКС обслуживает один этаж, то подсистема внутренних магистралей может отсутствовать;
• горизонтальная подсистема (horizontal cabling), иногда называемая третичной подсистемой, образована внутренними горизонтальными кабелями между КЭ и информационными розетками рабочих мест, самими информационными розетками, коммутационным оборудованием в КЭ, к которому подключаются горизонтальные кабели, и коммутационными шнурами и/или перемычками в КЭ. В составе горизонтальной проводки допускается использование одной точки перехода, в которой происходит изменение типа прокладываемого кабеля.
Иногда из соображений удобства проектирования и эксплуатационного обслуживания применяется более мелкое дробление оборудования СКС на отдельные подсистемы. Так, например, элементы подключения сетевого оборудования к СКС в кроссовой выделяются в отдельную административную подсистему, а шнуры, адаптеры и другие элементы, необходимые на рабочих местах, образуют отдельную подсистему рабочего места и т.д.
Распределительные пункты размещаются в шкафах оборудования или помещениях оборудования. Для прокладки кабелей используются подходящие элементы конструкции здания, такие как воздуховоды, тоннели, кабельные лотки, и т. Д.
1.2.9 Технические помещения
Технические помещения, необходимые для построения СКС и информационной системы предприятия, в целом делятся на аппаратные и кроссовые.
Аппаратной называется техническое помещение, в котором наряду с коммутационным оборудованием СКС располагается сетевое оборудование коллективного пользования (АТС, серверы, концентраторы). Если основной объем установленных в этом помещении технических средств составляет оборудование ЛВС, то его иногда называют серверной, а если учрежденческая АТС и системы внешних телекоммуникаций – узлом связи. Аппаратные оборудуются системами пожаротушения, кондиционирования и контроля доступа.
Кроссовая представляет собой помещение, в котором размещается коммутационное оборудование СКС, сетевое и другое вспомогательное оборудование. Желательно ее размещение вблизи вертикального стояка, оборудование телефоном и системой контроля доступа. При этом уровень оснащения кроссовой оборудованием инженерного обеспечения ее функционирования в целом является более низким по сравнению с аппаратными. Кроссовые на практике достаточно часто называют просто техническими (этажными) помещениями, встречается также наименование «хабовые».
Аппаратная может быть совмещена с кроссовой здания (КЗ или BD). В этом случае его сетевое оборудование может подключаться непосредственно к коммутационному оборудованию СКС. Если аппаратная расположена отдельно, то ее сетевое оборудование подключается к локально расположенному коммутационному оборудованию или к обычным информационным розеткам рабочих мест. В кроссовую внешних магистралей (КВМ) сходятся кабели внешней магистрали, подключающие к ней КЗ. В КЗ заводятся внутренние магистральные кабели, подключающие к ним кроссовые этажей (КЭ или FD). К КЭ, в свою очередь, горизонтальными кабелями подключены информационные розетки рабочих мест. В качестве дополнительных связей, увеличивающих гибкость и живучесть системы, допускается прокладка внешних магистральных кабелей между КЗ и внутренних магистральных кабелей между КЭ.
Допускается объединение КВМ с КЗ, если они расположены в одном здании. Аналогично КЗ может быть совмещена с КЭ, если они расположены на одном этаже. Если плотность рабочих мест на этаже или его части мала, то в качестве исключения допускается подключение к КЭ горизонтальных кабелей смежных этажей.
1.3 Коммутационное оборудование.
Рабочее место по определению стандарта служит интерфейсом между горизонтальной кабельной системой, заканчивающейся телекоммуникационной розеткой, и активным оборудованием конечного пользователя. Оборудование рабочего места и кабель (аппаратный шнур), используемый для подключения активного оборудования к ТО, не входят в сферу действия стандарта '568. Ниже перечислены некоторые спецификации, относящиеся к каблированию рабочего места.
Длины горизонтальных кабелей определяются из предположения, что максимально допустимая длина кабеля для подключения активного оборудования на рабочем месте равна 3 м. Рабочие характеристики (категория) шнуров активного оборудования должны соответствовать или быть лучше рабочих характеристик пэтч-кордов той же категории.
Адаптеры и устройства, предназначенные для поддержки специфических приложений, должны устанавливаться вне по отношению к телекоммуникационной розетке. При использовании таких адаптеров предполагается, что они совместимы с категорией того горизонтального кабеля, к которому они подсоединяются.
Телекоммуникационные шкафы в общем случае рассматриваются как устройства, предназначенные для обслуживания горизонтальной распределительной системы. Кроме этой основной функции, они могут выполнять и дополнительные – в них допускается размещение промежуточных и главных кроссов. Ниже перечислены некоторые спецификации, относящиеся к каблированию телекоммуникационных шкафов.
Рис. 1.3 Телекоммуникационный шкаф.
Не разрешается использовать перетерминирование горизонтальных кабелей для внесения штатных изменений в кабельную систему. Для этих целей следует использовать кроссировочные перемычки и пэтч-корды.
Для избежания деформирования кабелей вследствие тугого скручивания в пучки, слишком крутых изгибов и растягивающих усилий, следует использовать оборудование, специально предназначенное для укладки и маршрутизации кабельных потоков.
Кабели и шнуры, используемые для подключения активного оборудования, не рассматриваются стандартом в качестве элементов кабельной системы. Максимально допустимая суммарная длина всех пэтч-кордов и аппаратных шнуров на обоих концах линии -10м.