Автор работы: Пользователь скрыл имя, 15 Марта 2013 в 19:59, доклад
Після створення процесора 8086 фірма Intel розробила більш досконалі процесори об’єднані під назвою I 80x86, така назва означає, що всі команди мікропроцесора, які виконуються на молодших моделях обов’язково виконуються на старше, отже все ПЗ, які розроблені для процесора 8086 успішно будуть працювати і на останніх моделях 80486 і Pentium. Ми будемо розглядати процесори з точки зору програміста. Не дивлячись на різноманітність моделей процесорів, найбільш важливим з точки зору біології програмування є 8086 як базова модель і 80386 , як перший процесор фірми Intel, який в повному об’ємі реалізував принцип багатозадачності.
В ходе предыдущего обсуждения мы выяснили все основные правила записи команд и операндов в программе на ассемблере. Открытым остался вопрос о том, как правильно оформить последовательность команд, чтобы транслятор мог их обработать, а микропроцессор - выполнить.
При рассмотрении архитектуры микропроцессора мы узнали, что он имеет шесть сегментных регистров, посредством которых может одновременно работать:
Еще раз вспомним, что физически сегмент представляет собой область памяти, занятую командами и (или) данными, адреса которых вычисляются относительно значения в соответствующем сегментном регистре.
Синтаксическое описание сегмента на ассемблере представляет собой конструкцию, изображенную на рис. 14:
Рис. 14. Синтаксис описания сегмента
Важно отметить, что функциональное
назначение сегмента несколько шире, чем простое разбиение
программы на блоки кода, данных и стека.
Сегментация является частью более общего
механизма, связанного с концепцией модульного программирования. Она
предполагает унификацию оформления объектных
модулей, создаваемых компилятором, в
том числе с разных языков программирования.
Это позволяет объединять программы, написанные
на разных языках. Именно для реализации
различных вариантов такого объединения
и предназначены операнды в директиве SEGMENT.
Рассмотрим их подробнее.
По умолчанию тип выравнивания имеет значение PARA.
По умолчанию атрибут комбинирования принимает значение PRIVATE.
Все сегменты сами по себе равноправны, так как директивы SEGMENT и ENDS не содержат информации о функциональном назначении сегментов. Для того чтобы использовать их как сегменты кода, данных или стека, необходимо предварительно сообщить транслятору об этом, для чего используют специальную директиву ASSUME, имеющую формат, показанный на рис. 15. Эта директива сообщает транслятору о том, какой сегмент к какому сегментному регистру привязан. В свою очередь, это позволит транслятору корректно связывать символические имена, определенные в сегментах. Привязка сегментов к сегментным регистрам осуществляется с помощью операндов этой директивы, в которых имя_сегмента должно быть именем сегмента, определенным в исходном тексте программы директивой SEGMENT или ключевым словом nothing. Если в качестве операнда используется только ключевое слово nothing, то предшествующие назначения сегментных регистров аннулируются, причем сразу для всех шести сегментных регистров. Но ключевое слово nothing можно использовать вместо аргумента имя сегмента; в этом случае будет выборочно разрываться связь между сегментом с именем имя сегмента и соответствующим сегментным регистром (см. рис. 15).
Рис. 15. Директива ASSUME
На уроке 3 мы рассматривали пример
программы с директивами
Для простых программ, содержащих
по одному сегменту для кода, данных
и стека, хотелось бы упростить ее
описание. Для этого в трансляторы
MASM и TASM ввели возможность
В листинге 1 приведен пример программы с использованием упрощенных директив сегментации:
Листинг 1. Использование упрощенных директив сегментации ;---------Prg_3_1.asm--------- masm ;режим работы TASM: ideal или masm model small ;модель памяти .data ;сегмент данных message db 'Введите две шестнадцатеричные цифры,$' .stack ;сегмент стека db 256 dup ('?') ;сегмент стека .code ;сегмент кода main proc ;начало процедуры main mov ax,@data ;заносим адрес сегмента данных в регистр ax mov ds,ax ;ax в ds ;далее текст программы (см. сегмента кода в листинге 3.1 книги) mov ax,4c00h ;пересылка 4c00h в регистр ax int 21h ;вызов прерывания с номером 21h main endp ;конец процедуры main end main ;конец программы с точкой входа main |
Синтаксис директивы MODEL показан на рис. 16.
Рис. 16. Синтаксис директивы MODEL
Обязательным параметром директивы MODEL является модель памяти. Этот параметр определяет модель сегментации памяти для программного модуля. Предполагается, что программный модуль может иметь только определенные типы сегментов, которые определяются упомянутыми нами ранее упрощенными директивами описания сегментов. Эти директивы приведены в табл. 3.
Формат
директивы |
Формат
директивы |
Назначение |
.CODE [имя] |
CODESEG[имя] |
Начало или продолжение сегмента кода |
.DATA |
DATASEG |
Начало или продолжение сегмента инициализированных данных. Также используется для определения данных типа near |
.CONST |
CONST |
Начало или продолжение сегмента постоянных данных (констант) модуля |
.DATA? |
UDATASEG |
Начало или продолжение сегмента неинициализированных данных. Также используется для определения данных типа near |
.STACK [размер] |
STACK [размер] |
Начало или продолжение сегмента стека модуля. Параметр [размер] задает размер стека |
.FARDATA [имя] |
FARDATA [имя] |
Начало или продолжение сегмента инициализированных данных типа far |
.FARDATA? [имя] |
UFARDATA [имя] |
Начало или продолжение сегмента неинициализированных данных типа far |
Наличие в некоторых директивах параметра [имя] говорит о том, что возможно определение нескольких сегментов этого типа. С другой стороны, наличие нескольких видов сегментов данных обусловлено требованием обеспечить совместимость с некоторыми компиляторами языков высокого уровня, которые создают разные сегменты данных для инициализированных и неинициализированных данных, а также констант.
При использовании директивы MODEL транслятор делает доступными несколько идентификаторов, к которым можно обращаться во время работы программы, с тем, чтобы получить информацию о тех или иных характеристиках данной модели памяти (см. табл. 5). Перечислим эти идентификаторы и их значения (табл. 4). Таблица 4. Идентификаторы, создаваемые директивой MODEL
Имя идентификатора |
Значение переменной |
@code |
Физический адрес сегмента кода |
@data |
Физический адрес сегмента данных типа near |
@fardata |
Физический адрес сегмента данных типа far |
@fardata? |
Физический адрес сегмента неинициализированных данных типа far |
@curseg |
Физический адрес сегмента неинициализированных данных типа far |
@stack |
Физический адрес сегмента стека |