Автор работы: Пользователь скрыл имя, 15 Января 2013 в 08:02, реферат
С задачей распознавания образов живые системы, в том числе и человек, сталкиваются постоянно с момента своего появления. В частности, информация, поступающая с органов чувств, обрабатывается мозгом, который в свою очередь сортирует информацию, обеспечивает принятие решения, а далее с помощью электрохимических импульсов передает необходимый сигнал далее, например, органам движения, которые реализуют необходимые действия. Затем происходит изменение окружающей обстановки, и вышеуказанные явления происходят заново. И если разобраться, то каждый этап сопровождается распознаванием.
Введение 3
1. История распознавания образов 5
2. Определения 7
2.1. Оптическое распознавание символов. Распознавание букв 9
2.2. Распознавание штрих-кодов 12
2.3. Распознавание автомобильных номеров 14
2.4. Распознавание лиц и других биометрических данных 16
2.5. Распознавание речи 17
3. Методы распознавания образов 20
4. Общая характеристика задач распознавания образов и их типы 21
Заключение 22
Литература 24
Интерес к процедурам, лежащим в
основе процесса узнавания и распознавания
лиц, всегда был значительным, особенно
в связи с возрастающими
Распознавание речи — процесс преобразования речевого сигнала в цифровую информацию (напр., текстовые данные). Обратной задачей является синтез речи.
Первое устройство для распознавания речи появилось в 1952 году, оно могло распознавать произнесённые человеком цифры. В 1964 году на ярмарке компьютерных технологий в Нью-Йорке было представлено устройство IBM Shoebox.
Коммерческие программы по распознаванию речи появились в начале девяностых годов. Обычно их используют люди, которые из-за травмы руки не в состоянии набирать большое количество текста. Эти программы (например, Dragon NaturallySpeaking, VoiceNavigator) переводят голос пользователя в текст, таким образом, разгружая его руки. Надёжность перевода у таких программ не очень высока, но с годами она постепенно улучшается.
Увеличение вычислительных мощностей мобильных устройств позволило и для них создать программы с функцией распознавания речи. Среди таких программ стоит отметить приложение Microsoft Voice Command, которое позволяет работать со многими приложениями при помощи голоса. Например, можно включить воспроизведение музыки в плеере или создать новый документ.
Интеллектуальные речевые
Прогресс, однако, не стоит на месте
и в последнее время в
Следующим шагом технологий распознавания речи можно считать развитие так называемых Silent Speech Interfaces (SSI) (Интерфейсов Безмолвного Доступа). Эти системы обработки речи базируются на получении и обработке речевых сигналов на ранней стадии артикулирования. Данный этап развития распознавания речи вызван двумя существенными недостатками современных систем распознавания: чрезмерная чувствительность к шумам, а также необходимость четкой и ясной речи при обращении к системе распознавания. Подход, основанный на SSI, заключается в том, чтобы использовать новые сенсоры, не подверженные влиянию шумов в качестве дополнения к обработанным акустическим сигналам.
Виды систем.
На сегодня существует два типа систем распознавания речи — работающие «на клиенте» (client-based) и по принципу «клиент-сервер» (client-server). При использовании клиент-серверной технологии речевая команда вводится на устройстве пользователя и через Интернет передается на удаленный сервер, где обрабатывается и возвращается на устройство в виде команды (Google Voice, Vlingo, пр.); ввиду большого количества пользователей сервера система распознавания получает большую базу для обучения. Первый вариант работает на иных математических алгоритмах и встречается редко (Speereo Software) — в этом случае команда вводится на устройстве пользователя и обрабатывается в нем же. Плюс обработки «на клиенте» в мобильности, независимости от наличия связи и работы удаленного оборудования. Так, система, работающая «на клиенте» кажется надежнее, но ограничивается, порой, мощностью устройства на стороне пользователя.
В целом, можно выделить три метода
распознавания образов: Метод перебора.
В этом случае производится сравнение
с базой данных, где для каждого
вида объектов представлены всевозможные
модификации отображения. Например,
для оптического распознавания
образов можно применить метод
перебора вида объекта под различными
углами, масштабами, смещениями, деформациями
и т. д. Для букв нужно перебирать
шрифт, свойства шрифта и т. д. В случае
распознавания звуковых образов, соответственно,
происходит сравнение с некоторыми
известными шаблонами (например, слово,
произнесенное несколькими
Второй подход - производится более глубокий анализ характеристик образа. В случае оптического распознавания это может быть определение различных геометрических характеристик. Звуковой образец в этом случае подвергается частотному, амплитудному анализу и т. д.
Следующий метод - использование искусственных
нейронных сетей (ИНС). Этот метод
требует либо большого количества примеров
задачи распознавания при обучении,
либо специальной структуры
Общая структура системы
Рисунок 7: Структура системы распознавания.
Задачи распознавания имеют следующие характерные черты.
Это информационные задачи, состоящие из двух этапов: - преобразование исходных данных к виду, удобному для распознавания; - собственно распознавание (указание принадлежности объекта определенному классу).
В этих задачах можно вводить понятие аналогии или подобия объектов и формулировать правила, на основании которых объект зачисляется в один и тот же класс или в разные классы.
В этих задачах можно оперировать
набором прецедентов-примеров, классификация
которых известна и которые в
виде формализованных описаний могут
быть предъявлены алгоритму
Для этих задач трудно строить формальные теории и применять классические математические методы (часто недоступна информация для точной математической модели или выигрыш от использования модели и математических методов несоизмерим с затратами).
Выделяют следующие типы задач распознавания: - Задача распознавания - отнесение предъявленного объекта по его описанию к одному из заданных классов (обучение с учителем); - Задача автоматической классификации - разбиение множества объектов, ситуаций, явлений по их описаниям на систему непересекающихся классов (таксономия, кластерный анализ, самообучение);
- Задача выбора информативного
набора признаков при
- Задача прогнозирования - суть
предыдущий тип, в котором
Распознавание образов (а
часто говорят - объектов, сигналов,
ситуаций, явлений или процессов)
- самая распространенная задача, которую
человеку приходится решать практически
ежесекундно от первого до последнего
дня своего существования. Для этого
он использует огромные ресурсы своего
мозга, которые мы оцениваем таким
показателем как число
Можно даже не утруждая себя
примерами заметить, что похожие
действия наблюдаются в биологии,
в живой природе, а иногда даже
в неживой. Кроме того, распознавание
постоянно встречается в
С более общих позиций можно утверждать, и это вполне очевидно, что в повседневной деятельности человек постоянно сталкивается с задачами, связанными с принятием решений, обусловленных непрерывно меняющейся окружающей обстановкой. В этом процессе принимают участие: органы чувств, с помощью которых человек воспринимает информацию извне; центральная нервная система, осуществляющая отбор, переработку информации и принятие решений; двигательные органы, реализующие принятое решение. Но в основе решений этих задач лежит, в чем легко убедиться, распознавание образов.
В своей практике люди решают разнообразные задачи по классификации и распознаванию объектов, явлений и ситуаций (мгновенно узнают друг друга, с большой скоростью читают печатные и рукописные тексты, безошибочно водят автомобили в сложном потоке уличного движения, осуществляют отбраковку деталей на конвейере, разгадывают коды, древнюю египетскую клинопись и т.д.).
Вычисления в сетях формальных нейронов, во многом напоминают обработку информации мозгом. В последнее десятилетие нейрокомпьютинг приобрел чрезвычайную популярность на Западе, где он уже успел превратиться в инженерную дисциплину, тесно связанную с производством коммерческих продуктов. Ежегодно выходят десятки книг, посвященных практическим аспектам нейрокомпьютинга. Интенсивно ведутся работы по созданию новой – аналоговой элементной базы для нейровычислений.
В России же, где в силу общего снижения
тонуса научных исследований структура
науки оказалась «замороженной»
Перспективы в ближайшем будущем. Основной чертой, отличающей нейрокомпьютеры от современных компьютеров и обеспечивающей будущее этого направления, по мнению автора, является способность решать неформализованные проблемы, для которых в силу тех или иных причин еще не существует алгоритмов решения. Нейрокомпьютеры предлагают относительно простую технологию порождения алгоритмов путем обучения. В этом их основное преимущество, их «миссия» в компьютерном мире.
Возможность порождать алгоритмы оказывается особенно полезной для задач распознавания образов, в которых зачастую не удается выделить значимые признаки априори. Вот почему нейрокомпьютинг оказался актуален именно сейчас, в период расцвета мультимедиа, когда развитие глобальной сети Internet требует разработки новых технологий, тесно связанных с распознаванием образов. Однако – обо всем по порядку.