Разновидности компьютерной графики

Автор работы: Пользователь скрыл имя, 21 Мая 2013 в 19:49, реферат

Описание работы

Различают три вида компьютерной графики. Это растровая графика, векторная графика и фрактальная графика. Они отличаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге. В растровой графике изображение представляется в виде набора окрашенных точек. Такой метод представления изображения называют растровым. Растровую графику применяют при разработке электронных (мультимедийных) и полиграфических изданий. Иллюстрации, выполненные средствами растровой графики, редко создают вручную с помощью компьютерных программ. Чаще всего для этой цели используют отсканированные иллюстрации, подготовленные художниками, или фотографии.

Содержание работы

1. Виды компьютерной графики
2. Векторная графика
3. Растровая графика и пиксел
4. Фрактальная графика
5. Программное обеспечение
Список литературы

Файлы: 1 файл

Реферат комп графика.doc

— 83.50 Кб (Скачать файл)

Наиболее известный  фрактал, множество Мандельброта – фрактал с временным порогом. Для каждой точки на экране компьютер считает координаты серии точек, определяющих мнимый путь, называемый орбитой. Точки, чьи орбиты никогда не выходят за пределы мнимого цилиндра, расположенного в начале координат комплексной плоскости, считаются элементами множества Мандельброта и обычно закрашиваются черным. Точки, чьи орбиты выходят за пределы цилиндра, раскрашиваются в соответствии с быстротой "убегания": пиксель, чья орбита покидает цилиндр, например, на шестой итерации, можно раскрасить голубым, a тот - орбите которого требуется для этого семь итераций - красным. В результате на изображении получим множество Мандельброта и его окружение с "нестабильными" областями фрактала - областями, для которых малые изменения формулы ведут к большой разнице в орбитальном поведении. Это характеризуется густотой закраски рисунка. Меняя формулу для подсчета орбит, получим другие, такие же экзотические фракталы с временным порогом. Бесконечно детализированная структура множества Мандельброта становится "ясной", когда вы увеличиваете произвольную область. Неважно, сколь маленький участок вы рассматриваете: рисунок, который вы увидите, будет одинаково сложным. Почему? Потому что в двумерной плоскости, на которой строится множество Мандельброта, любая область содержит бесконечное число точек. Когда вы выбираете область для отображения, компьютер точкам из области ставит в соответствие точки на экране. И каждая точка, выбранная как угодно близко к другой, имеет свою характеристическую орбиту, порождающую соответствующий цветовой узор.

Математической основой  фрактальной графики является фрактальная геометрия. Здесь в основу метода построения изображений положен принцип наследования от, так называемых, «родителей» геометрических свойств объектов-наследников.

Понятия фрактал, фрактальная  геометрия и фрактальная графика, появившиеся в конце 70-х, сегодня прочно вошли в обиход математиков и компьютерных художников. Слово фрактал образовано от латинского fractus и в переводе означает «состоящий из фрагментов». Оно было предложено математиком Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался.

Фракталом называется структура, состоящая из частей, которые в  каком-то смысле подобны целому. Одним из основных свойств фракталов является самоподобие. Объект называют самоподобным, когда увеличенные части объекта походят на сам объект и друг на друга. Перефразируя это определение, можно сказать, что в простейшем случае небольшая часть фрактала содержит информацию обо всем фрактале.

В центре фрактальной  фигуры находится её простейший элемент - равносторонний треугольник, который получил название «фрактальный». Затем, на среднем отрезке сторон строятся равносторонние треугольники со стороной, равной (1/3a) от стороны исходного фрактального треугольника. В свою очередь, на средних отрезках сторон полученных треугольников, являющихся объектами-наследниками первого поколения, выстраиваются треугольники-наследники второго поколения со стороной (1/9а) от стороны исходного треугольника.

Таким образом, мелкие элементы фрактального объекта повторяют свойства всего объекта. Полученный объект носит название «фрактальной фигуры». Процесс наследования можно продолжать до бесконечности. Таким образом, можно описать и такой графический элемент, как прямую. Изменяя и комбинирую окраску фрактальных фигур можно моделировать образы живой и неживой природы (например, ветви дерева или снежинки), а также, составлять из полученных фигур «фрактальную композицию». Фрактальная графика, также как векторная и трёхмерная, является вычисляемой. Её главное отличие в том, что изображение строится по уравнению или системе уравнений. Поэтому в памяти компьютера для выполнения всех вычислений, ничего кроме формулы хранить не требуется.

Только изменив коэффициенты уравнения, можно получить совершенно другое изображение. Эта идея нашла использование в компьютерной графике благодаря компактности математического аппарата, необходимого для ее реализации. Так, с помощью нескольких математических коэффициентов можно задать линии и поверхности очень сложной формы. Итак, базовым понятием для фрактальной компьютерной графики являются «Фрактальный треугольник». Затем идет «Фрактальная фигура», «Фрактальный объект»; «Фрактальная прямая»; «Фрактальная композиция»; «Объект-родитель» и «Объект наследник». Следует обратить Ваше внимание на то, что фрактальная компьютерная графика, как вид компьютерной графики двадцать первого века получила широкое распространение не так давно. Её возможности трудно переоценить. Фрактальная компьютерная графика позволяет создавать абстрактные композиции, где можно реализовать такие композиционные приёмы как, горизонтали и вертикали, диагональные направления, симметрию и асимметрию и др. Сегодня немногие компьютерщики в нашей стране и за рубежом знают фрактальную графику. С чем можно сравнить фрактальное изображение?

Ну, например, со сложной  структурой кристалла, со снежинкой, элементы которой выстраивается в одну сложную структуру. Это свойство фрактального объекта может быть удачно использовано при составлении  декоративной композиции или для  создания орнамент. Сегодня разработаны алгоритмы синтеза коэффициентов фрактала, позволяющего воспроизвести копию любой картинки сколь угодно близкой к исходному оригиналу. С точки зрения машинной графики фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически благодаря фрактальной графике найден способ эффективной реализации сложных неевклидовых объектов, образы которых весьма похожи на природные.

Геометрические фракталы на экране компьютера - это узоры, построенные самим компьютером по заданной программе. Помимо фрактальной живописи существуют фрактальная анимация и фрактальная музыка.

Создатель фракталов - это художник, скульптор, фотограф, изобретатель и ученый в одном лице. Вы сами задаете форму рисунка математической формулой, исследуете сходимость процесса, варьируя его параметры, выбираете вид изображения и палитру цветов, то есть творите рисунок «с нуля». В этом одно из отличий фрактальных графических редакторов (и в частности - Painter) от прочих графических программ.

Например, в Adobe Photoshop изображение, как правило, «с нуля» не создается, а только обрабатывается. Другой самобытной особенностью фрактального графического редактора Painter (как и прочих фрактальных  программ, например Art Dabbler) является то, что реальный художник, работающий без компьютера, никогда не достигнет с помощью кисти, карандаша и пера тех возможностей, которые заложены в Painter программистами.

5. Программное обеспечение

 

Растровую графику применяют  при разработке электронных (мультимедийных) и полиграфических изданий. Иллюстрации, выполненные средствами растровой графики, редко создают вручную с помощью компьютерных программ. Чаще для этой цели используют сканируют иллюстрации, подготовленные художником на бумаге, или фотографии. В последнее время для ввода растровых изображений в компьютер нашли широкое применение цифровые фото- и видеокамеры. Соответственно, большинство графических редакторов, предназначенных для работы с растровыми иллюстрациями, ориентированы не столько на создание изображений, сколько на их обработку. В Интернет пока применяются только растровые иллюстрации. Программные средства для работы с векторной графикой наоборот предназначены, в первую очередь, для создания иллюстраций и в меньшей степени для их обработки. Такие средства широко используют в рекламных агентствах, дизайнерских бюро, редакциях и издательствах. Оформительские работы, основанные на применении шрифтов и простейших геометрических элементов, решаются средствами векторной графики намного проще. Существуют примеры высокохудожественных произведений, созданных средствами векторной графики, но они скорее исключение, чем правило, поскольку художественная подготовка иллюстраций средствами векторной графики чрезвычайно сложна.

Программные средства для работы с  фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов. Создание фрактальной художественной композиции состоит не в рисовании или оформлении, а в программировании. Фрактальную графику редко применяют для создания печатных или электронных документов, но ее часто используют в развлекательных программах.

 

Список литературы

  1. Джеф Проузис. Как работает компьютерная графика. – СПб.: Питер, 2008. – 654 с.
  2. Жвалевский А., Гурская И, Гурский Ю. Компьютерная графика: Photoshop CS3, CorelDRAW X3, Illustrator CS3. Трюки и эффекты. – СПб.: Питер, 2008. – 992 с.
  3. Божко А., Жук Д.М., Маничев В.Б. Компьютерная графика. Гриф УМО ВУЗов России. – М.: Издательство «МГТУ им. Баумана», 2007. – 392 с.
  4. Вишневская Л. Компьютерная графика для школьников. – М.: Новое знание, 2007. – 160 с.
  5. Летин А., Пашковский И., Летина О. Компьютерная графика. Гриф МО РФ. – М.: Форум, 2007. – 256 с.
  6. Сергеев А., Кущенко С. Основы компьютерной графики. Adobe Photoshop и CorelDRAW – два в одном. Самоучитель. – М.: Диалектика, 2007. – 544 с.
  7. Андреев О.Ю., Музыченко В.Л. Самоучитель компьютерной графики. Учебное пособие. – М.: Триумф, 2007. – 432 с.

Информация о работе Разновидности компьютерной графики