Сенсорные экраны, принципы работы, шины, протоколы

Автор работы: Пользователь скрыл имя, 03 Апреля 2013 в 14:25, контрольная работа

Описание работы

Традиционными средствами ввода информации в исполняющее устройство (компьютер) являются клавиатура (кнопки) и «мышь» (трекбол). Применение этих устройств привычно при работе с офисными приложениями, графикой, изображениями, а также для быстрого ввода текста. Однако в ряде случаев применение такого оборудования затруднено, зачастую не целесообразно, а иногда -невозможно. Например, в полевых условиях необходимо защищать клавиатуру и мышь от пыли, брызг и перепадов температуры. В некоторый случаях, например, в банкоматах, требуются не 102, а чуть более десятка клавиш. Использование «вандалонеустойчивой» мыши вообще исключено.

Содержание работы

Введение ……………………………………………………….3
Резистивные сенсорные экраны ………………………6
Емкостные сенсорные экраны…………………….…...9
С определение поверхностно-акустических волн…...15
Инфракрасные сенсорные экраны……………….…...17
Заключение …………………………………………….22
Список используемых источников …………………..24

Файлы: 1 файл

sensornye_ekrany.doc

— 521.00 Кб (Скачать файл)

От большинства  перечисленных выше недостатков  свободен другой вид емкостных экранов, обычно называемых проекционно-емкостными или поверхностно-емкостными (фирменные названия соответственно - «projected capacitive technology», PCT и «surface capacitive»). В конструкции используется две системы из вертикальных и горизонтальных хорошо проводящих ток электродов, изолированных друг от друга слоем стекла и образующих решетку (рис.6).

Рис.6. Устройство PCT-экранов

Каждый электрод, будучи проводником, имеет некоторую  электрическую емкость. Можно сказать, что в данном случае мы имеем дело со своеобразным конденсатором, одной  обкладкой которого является сам  электрод, а другой - любой проводящий ток предмет, например, человек. Все горизонтальные электроды (и все вертикальные) имеют одинаковые размеры, форму и проводимость, поэтому, при отсутствии вблизи экрана проводящих предметов, их емкости приблизительно равны. Микроконтроллер последовательно подает на каждый из электродов импульс напряжения и измеряет амплитуду возникающего импульса тока, который заряжает «конденсатор».

При поднесении к экрану проводящего предмета, например, пальца, емкость электродов меняется (рис.7).

 

Рис.7. Изменение емкости электродов.

Чем ближе электрод находится к проводящему предмету, тем больше его емкость, потому что, как известно из физики, емкость обратно пропорциональна расстоянию между обкладками. А чем больше емкость электрода, тем больше импульс «заряжающего» тока. Микроконтроллер сравнивает эти импульсы и находит электрод, имеющий максимальную емкость - это и есть координата точки касания.

Принцип действия этой технологии можно рассмотреть  с другой точки зрения. При последовательном сканировании всех электродов вблизи поверхности экрана создается электрическое поле, напряженность которого во всех точках примерно одинакова. Проводящий предмет, поднесенный к экрану, модулирует (изменяет) картину распределения напряженности поля. Микропроцессор фиксирует изменения и вычисляет координаты положения проводящего предмета. Отсюда вытекает второе название технологии - Near Field Imaging (NFI).

PCT-экраны имеют высокую прозрачность (до 90%) и способны работать в очень широком диапазоне температур (от – 40 °С до 60°С). Загрязнения поверхности экрана, проводящие электрический ток, а также влажность вносят определенный вклад в изменение напряженности поля на поверхности экрана. Однако это изменение является постоянным, оно фиксируется электроникой и вычитается при анализе, то есть, другими словами, игнорируется. Высокая чувствительность позволяет использовать для защиты экрана очень толстое (до 12 мм) и очень прочное стекло. Кроме того, для активации экрана не обязателен электрический контакт, (то есть можно касаться экрана рукой в перчатке), и не накладывается особых требований к проводимости человека и пола (земли). Другой важной особенностью является возможность регистрации одновременно нескольких точек касания, причем экран способен различать, например, касание стилусом и рукой. Обычно используется проводящий ток стилус, который вдобавок соединяется с системным блоком компьютера, приобретая нулевой потенциал, что позволяет ему вызывать значительно бОльшие изменения емкости электродов, нежели пальцу руки. Одновременное использование стилуса и пальца руки позволяет более полно эмулировать работу мыши и ее клавиш. Кроме того, экран позволяет игнорировать ладонь руки, касающейся экрана при рисовании или письме.

К недостаткам PCT-устройств следует отнести меньшую, чем у лучших моделей традиционных емкостных экранов, разрешающую способность, которой, тем не менее, достаточно для рисования или ввода надписей. Кроме того, при наличии очень толстого защитного стекла возрастает погрешность определения координат по краям экрана. Дело здесь в том, что пользователь касается не объекта на дисплее, а его проекции на переднюю поверхность стекла сенсорного экрана. А при большом угле наблюдения (относительно нормали к экрану) и значительной толщине стекла, эта проекция находится не строго над объектом, а смещается в сторону (параллакс). Другими словами, палец упирается в стекло не совем там, где находится желаемая точка.

PCT-экраны незаменимы  в тех случаях, когда требуется  прочное, надежное и «вандалоустройчивое» устройство. Банкоматы, пункты продажи билетов, справочные киоски, например, на вокзалах и в транспорте, обычно оснащаются именно такими сенсорными экранами. Также эта технология используется в экранах планшетных компьютеров (TabletPC) и сенсорных панелях TouchPad (фирмы Synoptics), которые с 1994 года служат устройством указания (позиционирования) в ноутбуках.

 

 

С определение  поверхностно-акустических волн

Перечисленные выше виды сенсорных экранов (резистивные  и емкостные) получили в настоящее  время очень широкое распространение. Однако в ряде случаев удобнее примененять другие типы. Рассмотрим такие устройства подробнее.

Конструкция матричных  сенсорных экранов, называемых иногда цифровыми, очень схожа с конструкцией резистивных экранов, только вместо сплошных резистивных слоев используются горизонтальные и вертикальные прозрачные проводящие полосы. При касании экрана передняя пленка деформируется и вертикальная полоса касается горизонтальной. Наличие замыкания фиксирует микропроцессор. Расположение всех электродов на плоскости известно, а потому пересечение замкнутых электродов однозначно определяет точку касания экрана.

Основной недостаток данного устройства - очень низкое разрешение, порядка 10 линий на дюйм. Поэтому такие устройства совершенно не подходят для рисования и ввода надписей. Главное достоинство - самая низкая среди всех сенсорных экранов стоимость. Надежность матричных экранов выше, чем резистивных, так как даже при нарушении проводящего слоя (изменении сопротивления) микроконтроллер определит наличие замыкания между электродами и вычислит координату точки касания точно. Матричные экраны применяются в тех случаях, когда требуется дешевый экран, а программа-приложение допускает низкую точность указания.

Сенсорные экраны, использующие поверхностные акустические волны (surface acoustic wave, SAW), имеют довольно сложную конструкцию (рис.8).

Рис.8. Конструкция сенсорного экрана на ПАВ

По углам  прочного стеклянного основания, служащего  основой конструкции, находятся  пьезоэлектрические излучатели, генерирующие ультразвук (5 МГц). По периметру экрана находятся массивы отражателей, благодаря которым излучаемая акустическая волна распространяется по всей поверхности экрана и фиксируется пьезоэлектрическими приемниками. При касании экрана пальцем часть энергии акустических волн поглощается. Приемники фиксируют это изменение, а микроконтроллер вычисляет положение точки касания. Точность этих экранов выше, чем у матричных, но ниже, чем у традиционных емкостных. Для рисования и ввода текста они не, как правило, не используются.

          Главным достоинством экрана на ПАВ является возможность отслеживать не только координаты точки, но и силу нажатия. Это возможно, так как степень поглощения акустических волн зависит от величины давления в точке касания. Устройство имеет очень высокую прозрачность, так как свет от отображающего устройства проходит через стекло, не содержащее резистивных или проводящих покрытий. В некоторых случаях, для борьбы с бликами, стекло вообще не используется, а излучатели, приемники и отражатели крепятся непосредственно к экрану отображающего устройства. Главным недостатком являются сбои в работе при наличии вибрации или воздействии акустическими шумами, а также при загрязнении экрана. Любой посторонний предмет, размещенный на экране, (например, жевательная резинка), полностью блокирует его работу. Кроме того, данная технология требует касания предметом, который обязательно поглощает акустические волны, то есть, например, пластиковая банковская карточка в данном случае неприменима. Несмотря на сложность конструкции, эти экраны довольно долговечны. По заявлению, например, тайваньской фирмы GeneralTouch, они выдерживают до 50 миллионов касаний в одной точке, то превышает ресурс 5проводного резистивного экрана. Экраны на ПАВ применяются, в основном, в игровых автоматах, охраняемых справочных системах и образовательных учреждениях.

 

Инфракрасные  сенсорные экраны

В ряде случаев  к качеству изображения, воспроизводимого отображающим устройством, предъявляются  строгие требования. Это касается дисплеев, предназначенных, в основном, для просмотра телевизионных передач, видеофильмов или отображения иллюстративного материала (слайдов и фотографий), например, в художественном кружке или фотостудии. При необходимости оснащения    такого    устройства    сенсорным    экраном    лучшим    решением    будет    применениинфракрасной технологии. Для определения точки касания используются две линейки светодиодов, расположенные по вертикали и горизонтали, и две линейки фотодиодов, расположенные на противоположных сторонах экрана (рис.9).

                           Рис.9. Устройство инфракрасного сенсорного экрана

Каждому светодиоду соответствует свой фотодиод. Работает такая оптическая пара следующим  образом. При подаче напряжения на светодиод  он излучает невидимый для человека инфракрасный свет в пределах очень небольшого телесного угла, чтобы попасть на «свой» фотодиод «не задеть» соседние. Любое препятствие, например, касающийся экрана палец руки, частично или полностью перекрывающее световой луч, приводит к уменьшению или прекращению электрического тока через соответствующий фотодиод. Это изменение фиксируется микроконтроллером, позволяя вычислить координату касания с высокой точностью. Обычно светодиод (и, соответственно, фотодиод) в линейке имеет размеры порядка 2,5 мм, то есть на каждый квадратный сантиметр панели приходится четыре горизонтальных и четыре вертикальных сканирующих луча. Однако механизмы интерполяции, используемые микроконтроллером, позволяют вычислять положение препятствия с большей точностью. Инфракрасный сенсорный экран выполняется в виде рамки, которая не имеет никаких стекол или прозрачных пленок. Поэтому изменение яркости, контраста и цветопередачи изображения, а также появление дополнительных бликов исключены, что является несомненным достоинством экрана. Инфракрасная технология не лишена ряда недостатков. Применение в качестве отображающего устройства жидкокристаллических панелей нежелательно, так как касание их поверхности может привести к повреждению TFT-транзисторов и появлению «мертвых» точек, (которые всегда либо включены, либо выключены). Рамка сенсорного экрана зачастую не прилегает к экрану дисплея вплотную, а находится на некотором расстоянии, при этом вследствие параллакса становятся заметными ошибки определения координат по углам. Устройство имеет невысокую надежность, что связанно, во-первых, с небольшим сроком службы ИК-светодиодов, а во-вторых, с особенностями конструкции - оптопары боятся пыли, загрязнений и конденсата. Попадание прямого солнечного света вызывает сбои в работе. Кроме того, такие экраны имеют самую высокую стоимость. Применяются ИК-экраны обычно в образовательных учреждениях -в качестве интерактивных панелей большого размера, и в игровых автоматах.

Для работы с  большими отображающими устройствами также используется технология DViT (Digital  Vision Touch) фирмы «Smart Technologies». Сенсорный экран представляет собой лист полиэстера,   заключенный   в   прямоугольную   рамку.   По   углам   рамки   находятся   миниатюрные видеокамеры, которые формируют изображение поверхности экрана (Рис.10).

Для вычисления координаты точки касания математически  достаточно двух камер, расположенных  в соседних углах. Однако для повышения  точности часто используется четыре камеры. Для защиты экрана отображающего  устройства, например, ЖК-панели, служит лист полиэстера. Он не содержит резистивных или проводящих слоев, поэтому не искажает цветопередачу дисплея и имеет высокую прозрачность - до 95%. Точности вычисления координат достаточно для рисования и ввода надписей. Эта технология предназначена для применения в образовательных учреждениях, при проведении конференций и презентаций. Сенсорная насадка может использоваться с матричными дисплеями и проекционными (прямой и обратной проекции) отображающими устройствами, формирующими изображение большого размера. В комплекте с экраном может поставляться лоток с «цветными» электронными перьями для рисования и ластиком. Цвет используемого пера или наличие на экране ластика определяется либо с помощью датчиков лотка, фиксирующих отсутствие инструмента, либо с помощью видеокамер. Это весьма удобно, так как для выбора цвета надписей и переход в режим стирания осуществляются автоматически.

Для переносных электронных устройств, например, планшетов, MP3-плееров, коммуникаторов и карманных  персональных компьютеров (КПК или Pocket PC, называемых также наладонниками, PDA и Palm) сенсорный экран является жизненно необходимым компонентом пользовательского интерфейса. Учитывая габариты, наличие батарейного питания и особенности эксплуатации перечисленных выше устройств, ясно, что из описанных выше технологий подходят только резистивные и PCT-экраны. Обе технологии имеют общие недостатки. Во-первых, сенсорные панели располагаются перед экраном, а потому уменьшают яркость и контраст, искажают цветопередачу. Во-вторых, функциональность (количество выполняемых действий) этих устройств ниже, чем у традиционной «мыши». Например, применение резистивного экрана в ряде случае требует отдельной кнопки - аналога правой клавиши «мыши». В отличие от резистивной технологии, PCT-экран способен различать прикосновение стилуса и пальца руки. Это позволяет использовать палец в качестве аналога правой клавиши мыши, что, однако, не всегда удобно.

От  описанных выше недостатков свободны индуктивные сенсорные экраны, принцип  действия которых схож с PCT-технологией. Под жидкокристаллическим экраном размещается панель, содержащая выполненные печатным способом катушки индуктивности. При подаче переменного напряжения катушки формируют на поверхности экрана электромагнитное поле. В качестве указателя используются стилус, в котором находится настроенный в резонанс контур. При поднесении стилуса к экрану этот контур модулирует электромагнитное поле, изменяя индуктивности расположенных под экраном печатных катушек. Причем чем ближе катушка к контуру стилуса, тем значительнее изменение ее индуктивности. Микроконтроллер фиксирует параметры катушек и вычисляет положение стилуса. Для повышения функциональности стилус обычно снабжается встроенной в наконечник микрокнопкой, которая подключает дополнительные витки к контуру и тем самым позволяет микроконтроллеру различать два разных состояния указателя. Индуктивный экран не влияет на качество изображения, не реагирует на касание ладонью при письме или рисовании и широко применяется в мобильных устройствах, например, планшетных компьютерах.

         Как известно, нет предела совершенству. И любой экран, как бы ни был он хорош, имеет недостатки. Это обстоятельство является стимулом для создания новых технологий. Большинство разработок применяются пока весьма ограниченно. Однако некоторым «счастливчикам» удается вырваться из «застенков» лабораторий. В настоящее время, например, внедряется технология использования дисперсионных волн (Dispersive Signal Technology, DST). Суть ее такова. Палец или стилус, касающийся подложки экрана, инициирует объемные изгибные акустические колебания. В углах подложки находятся пьезоэлектрические преобразователи, трансформирующие энергию вибрации в электрические сигналы. По разности фаз приходящих из углов колебаний микроконтроллер определяет положение точки касания. Экран имеет высокую прозрачность, долговечен и позволяет игнорировать касание ладони. Активируется любым предметом. Возможно использование с экранами как маленького, так большого размера.

Информация о работе Сенсорные экраны, принципы работы, шины, протоколы