Состав и характеристика ЛВС

Автор работы: Пользователь скрыл имя, 06 Февраля 2013 в 09:11, дипломная работа

Описание работы

Целью выпускной квалификационной работы является анализ состава и характеристик сетевого оборудования ЛВС.
Задачи исследования вытекают из поставленной цели:
1. Изучить научную литературу по рассматриваемой проблеме.
2. Определить структуру и функции модели локальной вычислительной сети (ЛВС), абстрактной сетевой модели, разработка сетевых протоколов.
3. Провести обзор и анализ состава и характеристик сетевого оборудования локальной вычислительной сети.
4. Обследовать ЛВС ООО «СКТ» и провести анализ сетевого оборудования с целью модернизации работы действующей на предприятии сети в рамках технического задания.
5. Разработать и внедрить в производство элементы модернизации сети.

Содержание работы

Введение 3
1 Анализ состава и характеристик сетевого оборудования ЛВС 6
1.1 Характеристика предметной области 6
1.2 Состав и назначение сетевого оборудования как объект исследования 11
1.3 Технологии и протоколы взаимодействия аппаратных средств ЛВС 22
1.4 Тенденции перспективного развития оборудования сети 31
2 Обследование и анализ ЛВС ООО «СКТ» с целью модернизации сети 32
2.1 Структура предприятия и действующей ЛВС 32
2.2 Обоснование выбора оборудования для модернизации сети 37
2.3 Перспективы развития ЛВС ООО «СКТ» 41
2.4 Разработка и внедрение элементов модернизации сетевого оборудования ЛВС ООО «СКТ» 45
Заключение 53
Глоссарий 57
Список использованных источников 59
Список сокращений 63
Приложения 64

Файлы: 1 файл

Овчинников, ВКР.doc

— 932.50 Кб (Скачать файл)

 

Таблица 2. - Сетевые параметры пользователей компьютерной сети             

Сетевой параметр

Значение

IP-адрес (сетевой адрес компьютера)

Назначаются администратором сети

Маска сети

255.255.255.0

Основной шлюз

192.168.0.254

DNS-сервер основной

192.168.0.253

DNS-сервер дополнительный

192.168.0.254


Основной шлюз – адрес компьютера, который предназначен для организации доступа пользователей компьютерной сети к сети Интернет.

DNS-сервер основной – Центральный сервер с установленной на него операционной системой Microsoft Windows 2008 Server Enterprise Edition (приложение Д), установленными на нем сетевыми службами Active Directory, DNS Server, File Server и т.п. В данном случае указывается в качестве сетевого параметра, так как при входе в систему клиентскому компьютеру необходимо иметь в сети работающий сервер DNS, способный разрешать имена хостов по их сетевым адресам, который также выполняет функции контроллера домена. Основной DNS – сервер, если он не является одновременно Интернет-шлюзом, способен разрешать только диапазон внутренних имен. Обслужить запросы клиентов за пределами внутренней сети он не в состоянии.

DNS-сервер дополнительный – в данном случае является одновременно Интернет-шлюзом и прокси-сервером организации. В качестве сетевого параметра пользовательского компьютера прописывается, так как способен разрешить его запросы на разрешение имен к внешним ресурсам, к сети Интернет [19, С. 229].

После настройки центрального сервера, Интернет-шлюза и клиентских компьютеров сеть готова к работе.

 

2.3 Перспективы развития ЛВС ООО «СКТ»

 

В настоящее время  к аппаратным средствам ЛВС различного масштаба предъявляются требования повышенной надежности,  отказоустойчивости, восстанавливаемости после отказов, высоких пропускных и нагрузочных способностей, масштабируемости, и улучшения прочих качественных и количественных характеристик, влияющих на производительность, как отдельного узла, так и всей сети в целом. С каждым следующим поколением данные требования выполняются производителями аппаратного обеспечения. Однако развитие на этом не заканчивается, а только начинается.

Производители, кроме  поддержки открытых распространенных протоколов в своем оборудовании, включают также технологии, алгоритмы и протоколы собственного изобретения, которые увеличивают функциональность устройств, их производительность и открывают дополнительные возможности для тонкой настройки и управления таким оборудованием.

Развитие подразумевает не только улучшение того, что уже есть, но и производство того, что раньше широко не использовалось. Таким прорывом в нашем столетии стало использование технологий широкополосного беспроводного доступа в гражданских целях. К таким технологиям относятся: SDH-сети, РРЛ, WiMax, BWA, Wi-Fi [11, с 217].

Несмотря на то, что  в настоящее время более широко распространены устоявшиеся и зарекомендовавшие  себя технологии X.25, Frame Relay, FDDI, ATM, Ethernet, несомненно, находят применение в определенных нишах и  технологии беспроводного доступа. Причем, в некоторых случаях только беспроводные технологии смогут обеспечить доступ там, где для проводных не будет технических условий или просто не будет физической возможности, в силу их ограничений, проложить кабель.

Сеть Wi-Fi - радиосеть, позволяющая  передавать информацию между объектами  по радиоволнам (без проводов). Разработкой  стандартов в этой области занимается Wi-Fi Alliance. Основным преимуществом Wi-Fi является предоставление клиентам – «мобильности», что крайне удобно. Основной минус – уязвимость перед злоумышленниками.

На данный момент на Российском рынке представлены три стандарта 802.11a, 802.11b и 802.11g.

802.11b - оборудование данного  стандарта поддерживает скорость  передачи до 11 Мбит/с. Частота  - 2,4 ГГц. Шифрование - WEP. У данного стандарта имеется продолжение, так называемый 802.11b+. Основное отличие 802.11b+ от 802.11b это скорость. 802.11b+ позволяет обмениваться данными на скоростях до 22 Мбит/с.

802.11g - более совершенный  стандарт, позволивший повысить степень защиты и скорость передачи данных до 54 МБит. Частота - 2,4 ГГц. Шифрование - WEP, WPA, WPA2. Основной особенностью оборудования данного стандарта является его обратная совместимость со стандартом 802.11b. Т.е если ранее был приобретен сетевой адаптер стандарта 802.11g, то можно быть абсолютно уверенным в том, что с ним можно работать в сети стандарта 802.11b.

Оба перечисленных выше стандарта на данный момент разрешены  к использованию в Российской Федерации, чего нельзя сказать о 802.11а  [12, с 104].

802.11a - стандарт аналогичный  802.11g но созданный для возможности  одновременного подключения множества  клиентов. Т.е. этот стандарт позволяет  расширить плотность по отношению  к 802.11g. Вторым наиболее значимым  отличием является частота радиоволны - 5ГГц. Именно из-за частоты этот стандарт на территории РФ без специального разрешения использовать нельзя [15, С.121].

WiMAX (англ. Worldwide Interoperability for Microwave Access) — телекоммуникационная  технология, разработанная с целью  предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов). Технология основана на стандарте IEEE 802.16, который также называют Wireless MAN. Название «WiMAX» [2, с 32], была создана WiMAX Forum — организацией, которая была основана в июне 2001 года с целью продвижения и развития технологии WiMAX. Форум описывает WiMAX как «основанную на стандарте технологию, предоставляющую высокоскоростной беспроводной доступ к сети, альтернативный выделенным линиям и DSL»

WiMAX подходит для решения  следующих задач:

- Соединения точек  доступа Wi-Fi друг с другом и  другими сегментами Интернета.

- Обеспечения беспроводного  широкополосного доступа как  альтернативы выделенным линиям и DSL.

- Предоставления высокоскоростных  сервисов передачи данных и  телекоммуникационных услуг.

- Создания точек доступа,  не привязанных к географическому  положению.

WiMAX позволяет осуществлять  доступ в Интернет на высоких  скоростях, с гораздо большим покрытием, чем у Wi-Fi сетей. Это позволяет использовать технологию в качестве «магистральных каналов», продолжением которых выступают традиционные DSL- и выделенные линии, а также локальные сети. В результате подобный подход позволяет создавать масштабируемые высокоскоростные сети в рамках целых городов.

Проблема последней  мили всегда была актуальной задачей  для связистов. К настоящему времени  появилось множество технологий последней мили, и перед любым  оператором связи стоит задача выбора технологии, оптимально решающей задачу доставки любого вида трафика своим абонентам. Универсального решения этой задачи не существует, у каждой технологии есть своя область применения, свои преимущества и недостатки. На выбор того или иного технологического решения влияет ряд факторов, в том числе:

- стратегия оператора, целевая аудитория, предлагаемые в настоящее время и планируемые к предоставлению услуги,

- размер инвестиций в развитие сети и срок их окупаемости,

- уже имеющаяся сетевая инфраструктура, ресурсы для её поддержания в работоспособном состоянии,

- время, необходимое для запуска сети и начала оказания услуг.

У каждого из этих факторов есть свой вес, и выбор той или  иной технологии принимается с учётом всех их в совокупности. Простая  и эффективная модель, позволяющая быстро оценить экономические параметры применения технологии WiMAX

Многие телекоммуникационные компании делают большие ставки на использование WiMAX для предоставления услуг высокоскоростной связи. И  тому есть несколько причин.

Во-первых, технологии семейства 802.16 позволят экономически более эффективно (по сравнению с проводными технологиями) не только предоставлять доступ в сеть новым клиентам, но и расширять спектр услуг и охватывать новые труднодоступные территории.

Во-вторых, беспроводные технологии многим более просты в использовании, чем традиционные проводные каналы. WiMAX и Wi-Fi сети просты в развёртывании и по мере необходимости легко масштабируемы. Этот фактор оказывается очень полезным, когда необходимо развернуть большую сеть в кратчайшие сроки. К примеру, WiMAX был использован для того чтобы предоставить доступ в Сеть выжившим после цунами, произошедшего в декабре 2004 года в Индонезии (Aceh). Вся коммуникационная инфраструктура области была выведена из строя и требовалось оперативное восстановление услуг связи для всего региона.

В сумме все эти  преимущества позволят снизить цены на предоставление услуг высокоскоростного  доступа в Интернет как для  бизнес структур, так и для частных  лиц.

 

Технология Fast Ethernet является эволюционным развитием классической технологии Ethernet [20, С.93].

Основными достоинствами  технологии Fast Ethernet являются:

  • увеличение пропускной способности сегментов сети до 100 Мб/c;
  • сохранение метода случайного доступа Ethernet;
  • сохранение звездообразной топологии сетей и поддержка традиционных сред передачи данных - витой пары и оптоволоконного кабеля.

Варианты реализации технологии Ethernet бывают следующие (Приложение Б):

100BASE-T — любой из 100-мегабитных стандартов Fast Ethernet для витой пары:

100BASE-TX — с использованием  двух пар проводников кабеля 5 категории или экранированной  витой паре STP Type 1;

100BASE-T4 — по четырёхпарному  кабелю Cat3 (и выше) в полудуплексном  режиме; более не используется;

100BASE-T2 — по двум  парам кабеля Cat3; более не используется.

Длина сегмента кабеля 100BASE-T ограничена 100 метрами (328 футов). В типичной конфигурации, 100BASE-TX использует для  передачи данных по одной паре скрученных (витых) проводов в каждом направлении, обеспечивая до 100 Мбит/с пропускной способности в каждом направлении (дуплекс).

100BASE-FX — вариант Fast Ethernet с использованием волоконно-оптического  кабеля. В данном стандарте используется  длинноволновая часть спектра (1300 нм) передаваемая по двум жилам, одна для приёма (RX) и одна для передачи (TX). Длина сегмента сети может достигать 400 метров (1 310 футов) в полудуплексном режиме (с гарантией обнаружения коллизий) и двух километров (6 600 футов) в полнодуплексном при использовании многомодового волокна. Работа на больших расстояниях возможна при использовании одномодового волокна. 100BASE-FX не совместим с 10BASE-FL, 10 Мбит/с вариантом по волокну.

100BASE-SX — дешёвая альтернатива 100BASE-FX с использованием многомодового волокна, так как использует более дешёвую коротковолновую оптику. 100BASE-SX может работать на расстояниях до 300 метров (980 футов). 100BASE-SX использует ту же самую длину волны как и 10BASE-FL. В отличие от 100BASE-FX, это позволяет 100BASE-SX быть обратно-совместимым с 10BASE-FL. Благодаря использованию более коротких волн (850 нм) и небольшой дистанции, на которой он может работать, 100BASE-SX использует менее дорогие оптические компоненты (светодиоды (LED) вместо лазеров). Все это делает данный стандарт привлекательным для тех, кто модернизирует сеть 10BASE-FL и тех, кому не нужна работа на больших расстояниях.

100BASE-BX — вариант Fast Ethernet по одножильному волокну, используется одномодовое волокно, наряду со специальным мультиплексором, который разбивает сигнал на передающие и принимающие волны.

100BASE-LX — 100 Мбит/с вариант Ethernet с помощью оптического кабеля. Максимальная длина сегмента 15 километров в полнодуплексном режиме по паре одномодовых оптических волокон.

100BASE-LX WDM — 100 Мбит/с вариант Ethernet с помощью волоконно-оптического кабеля. Максимальная длина сегмента 15 километров в полнодуплексном режиме по одному одномодовому оптическому волокну на длине волны 1310 нм и 1550 нм. Интерфейсы бывают двух видов, отличаются длиной волны передатчика и маркируются либо цифрами (длина волны), либо одной латинской буквой A(1310) или B(1550). В паре могут работать только парные интерфейсы: с одной стороны передатчик на 1310 нм, а с другой — на 1550 нм.

Технология АТМ [17, с 287] обладает многими привлекательными свойствами - масштабируемой скоростью передачи данных, доходящей до 10 Гб/с; отличной поддержкой мультимедийного трафика и возможностью работы как в локальных, так и в глобальных сетях. [18, С.142].

ATM (Asynchronous Transfer Mode) — асинхронный способ передачи данных – сетевая высокопроизводительная технология коммутации и мультиплексирования, основанная на передаче данных в виде ячеек (cell) фиксированного размера (53 байта), из которых 5 байтов используется под заголовок. В отличие от синхронного способа передачи данных (STM — Synchronous Transfer Mode), ATM лучше приспособлен для предоставления услуг передачи данных с сильно различающимся или изменяющимся битрейтом.

Сеть строится на основе АТМ коммутатора и АТМ маршрутизатора. Технология реализуется как в локальных, так и в глобальных сетях. Допускается совместная передача различных видов информации, включая видео, голос.

Ячейки данных, используемые в ATM, меньше в сравнении с элементами данных, которые используются в других технологиях. Небольшой, постоянный размер ячейки, используемый в ATM, позволяет:

- передавать данные по одним и тем же физическим каналам, причём как при низких, так и при высоких скоростях;

- работать с постоянными и переменными потоками данных;

- интегрировать   любые   виды информации: тексты, речь, изображения,  видеофильмы;

- поддерживать соединения типа точка-точка, точка-множество, множество-множество.

Технология ATM предполагает межсетевое взаимодействие на трёх уровнях.

Для передачи данных от отправителя к получателю в сети ATM создаются виртуальные каналы VC (Virtual Circuit), которые бывают двух видов [4, С.243]:

- постоянный виртуальный канал, PVC (Permanent Virtual Circuit), который создаётся между двумя точками и существует в течение длительного времени, даже в отсутствие данных для передачи;

Информация о работе Состав и характеристика ЛВС