Структурная схема ЭВМ

Автор работы: Пользователь скрыл имя, 21 Марта 2013 в 08:57, реферат

Описание работы

Компьютер (ЭВМ) — электронно-вычислительная машина — это программируемое электронное устройство, предназначенное для обработки и хранения (накопления) информации. По размеру, быстродействию, объему памяти современные ЭВМ принято делить на следующие классы:
Супер ЭВМ (CRAY и Эльбрус);
Большие ЭВМ;
Мини ЭВМ (персональные компьютеры);
Микро ЭВМ.

Содержание работы

1. Магистрально модульный принцип построения компьютера 4 стр.
2. Магистраль ……………………………………………………………………………….7 стр.
3. Процессор и оперативная память ……………………………………………8 стр.
4. Аппаратная реализация компьютера ………………………………………9 стр.
5. Системный блок компьютера …………………………………………………13стр.
6. Внешняя долговременная память …………………………………………14 стр.
7. Устройства ввода информации ……………………………………………..17 стр.
8. Устройства вывода информации …………………………………………..19 стр.
9. Заключение …………………………………………………………………………….22 стр.

Файлы: 1 файл

Отчет по учебной практике.docx

— 157.26 Кб (Скачать файл)

Южный мост обеспечивает обмен информацией  между северным мостом и портами  для подключения периферийного  оборудования.

Устройства хранения информации (жесткие  диски, CD-ROM, DVD-ROM) подключаются к южному мосту по шине UDMA (Ultra Direct Memory Access - прямое подключение к памяти).

Мышь и внешний модем подключаются к южному мосту с помощью последовательных портов, которые передают электрические импульсы, несущие информацию в машинном коде, последовательно один за другим. Обозначаются последовательные порты как СОМ1 и COM2, а аппаратно реализуются с помощью 25-контактного и 9-контактного разъемов, которые выведены на заднюю панель системного блока.

Принтер подключается к параллельному порту, который обеспечивает более высокую скорость передачи информации, чем последовательные порты, так как передает одновременно 8 электрических импульсов, несущих информацию в машинном коде. Обозначается параллельный порт как LPT, а аппаратно реализуется в виде 25-контактного разъема на задней панели системного блока.

Для подключения сканеров и цифровых камер обычно используется порт USB (Universal Serial Bus - универсальная последовательная шина), который обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств.

Клавиатура подключается обычно с  помощью порта PS/2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ситемный блок

Системный блок (сленг. системник, кейс, корпус) — функциональный элемент, защищающий внутренние компоненты компьютера от внешнего воздействия и механических повреждений, поддерживающий необходимый температурный режим внутри, экранирующий создаваемое внутренними компонентами электромагнитное излучение и являющийся основой для дальнейшего расширения системы. Системные блоки массово изготавливают заводским способом из деталей на основе стали, алюминия и пластика. Для творчества используются такие материалы, как древесина или органическое стекло.

«Начинка» системного блока

В системном блоке расположены:

Материнская плата с установленным  на ней процессором, ОЗУ, картами  расширения (видеокарта, звуковая карта, сетевая плата).

Отсеки для накопителей —  жёстких дисков, оптических приводов и т. п.

Блок питания.

Фронтальная панель с кнопками включения  и перезагрузки, индикаторами питания  и накопителей, опционально —  гнёзда для наушников и микрофона, интерфейсы передачи данных.

Типы корпусов

Горизонтальные (размеры  указаны в миллиметрах):

Desktop (533×419×152)

FootPrint (406×406×152)

SlimLine (406×406×101)

UltraSlimLine (381×352×75)

Вертикальные (размеры  указаны в миллиметрах):

MiniTower (152×432×432)

MidiTower (173×432×490)

BigTower (190×482×820)

SuperFullTower (разные размеры)

 

 

Внешняя (долговременная) память

Основной функцией внешней памяти компьютера является способность долговременно  хранить большой объем информации (программы, документы, аудио- и видеоклипы и пр.). Устройство, которое обеспечивает запись/считывание информации, называется накопителем, или дисководом, а хранится информация на носителях (например, дискетах).

Магнитный принцип записи и считывания информации. В накопителях на гибких магнитных дисках (НГМД) и накопителях на жестких магнитных дисках (НЖМД), или винчестерах, в основу записи информации положено намагничивание ферромагнетиков в магнитном поле, хранение информации основывается на сохранении намагниченности, а считывание информации базируется на явлении электромагнитной индукции.

В процессе записи информации на гибкие и жесткие магнитные диски  головка дисковода с сердечником  из магнито-мягкого материала (малая остаточная намагниченность) перемещается вдоль магнитного слоя магнитожесткого носителя (большая остаточная намагниченность). На магнитную головку поступают последовательности электрических импульсов (последовательности логических единиц и нулей), которые создают в головке магнитное поле. В результате последовательно намагничиваются (логическая единица) или не намагничиваются (логический нуль) элементы поверхности носителя.

В отсутствие сильных магнитных  полей и высоких температур элементы носителя могут сохранять свою намагниченность  в течение долгого времени (лет  и десятилетий).

При считывании информации при движении магнитной головки над поверхностью носителя намагниченные участки  носителя вызывают в ней импульсы тока (явление электромагнитной индукции). Последовательности таких импульсов  передаются по магистрали в оперативную  память компьютера.

Гибкие магнитные диски. Гибкие магнитные диски помещаются в пластмассовый корпус. Такой носитель информации называется дискетой. В центре дискеты имеется приспособление для захвата и обеспечения вращения диска внутри пластмассового корпуса. Дискета вставляется в дисковод, который вращает диск с постоянной угловой скоростью.

При этом магнитная головка дисковода  устанавливается на определенную концентрическую  дорожку диска, на которую и производится запись или с которой производится считывание информации. Информационная емкость дискеты невелика и составляет всего 1,44 Мбайт. Скорость записи и считывания информации также мала (составляет всего около 50 Кбайт/с) из-за медленного вращения диска (360 об. /мин).

В целях сохранения информации гибкие магнитные диски необходимо предохранять от воздействия сильных магнитных  полей и нагревания, так как  такие физические воздействия могут  привести к размагничиванию носителя и потере информации.

Жесткие магнитные диски. Жесткий магнитный диск представляет собой несколько десятков дисков, размещенных на одной оси, заключенных в металлический корпус и вращающихся с большой угловой скоростью.

За счет гораздо большего количества дорожек на каждой стороне дисков и большого количества дисков информационная емкость жесткого диска может  в сотни тысяч раз превышать  информационную емкость дискеты  и достигать 150 Гбайт. Скорость записи и считывания информации с жестких  дисков достаточно велика (может достигать 133 Мбайт/с) за счет быстрого вращения дисков (до 7200 об./мин).

 

В жестких дисках используются достаточно хрупкие и миниатюрные элементы (пластины носителей, магнитные головки  и пр.), поэтому в целях сохранения информации и работоспособности  жесткие диски необходимо оберегать  от ударов и резких изменений пространственной ориентации в процессе работы.

Оптический принцип записи и считывания информации. В лазерных дисководах CD-ROM и DVD-ROM используется оптический принцип записи и считывания информации.

В процессе записи информации на лазерные диски для создания участков поверхности  с различными коэффициентами отражения  применяются различные технологии: от простой штамповки до изменения  отражающей способности участков поверхности  диска с помощью мощного лазера. Информация на лазерном диске записывается на одну спиралевидную дорожку (как  на грампластинке), содержащую чередующиеся участки с различной отражающей способностью.

При соблюдении правил хранения (в  футлярах в вертикальном положении) и эксплуатации (без нанесения  царапин и загрязнений) оптические носители могут сохранять информацию в течение десятков лет.

В процессе считывания информации с  лазерных дисков луч лазера, установленного в дисководе, падает на поверхность  вращающегося диска и отражается. Так как поверхность лазерного  диска имеет участки с различными коэффициентами отражения, то отраженный луч также меняет свою интенсивность (логические 0 или 1). Затем отраженные световые импульсы преобразуются с  помощью фотоэлементов в электрические  импульсы и по магистрали передаются в оперативную память.

Лазерные дисководы и  диски. Лазерные дисководы (CD-ROM и DVD-ROM) используют оптический принцип чтения информации.

На лазерных CD-ROM (CD - Compact Disk, компакт-диск) и DVD-ROM (DVD - Digital Video Disk, цифровой видеодиск) дисках хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна, что отражено во второй части их названий: ROM (Read Only Memory - только чтение). Производятся такие диски путем штамповки и имеют серебристый цвет.

Информационная емкость CD-ROM диска  может достигать 650 Мбайт, а скорость считывания информации в CD-ROM-накопителе зависит от скорости вращения диска. Первые CD-ROM-накопители были односкоростными  и обеспечивали скорость считывания информации 150 Кбайт/с. В настоящее время широкое распространение получили 52-скоростные CD-ROM-накопители, которые обеспечивают в 52 раза большую скорость считывания информации (до 7,8 Мбайт/с).

DVD-диски имеют гораздо большую информационную емкость (до 17 Гбайт) по сравнению CD-дисками. Во-первых, используются лазеры с меньшей длиной волны, что позволяет размещать оптические дорожки более плотно. Во-вторых, информация на DVD-дисках может быть записана на двух сторонах, причем в два слоя на одной стороне.

Первое поколение DVD-ROM-накопителей  обеспечивало скорость считывания информации примерно 1,3 Мбайт/с. В настоящее  время 16-скоростные DVD-ROM-дисководы достигают  скорости считывания до 21 Мбайт/с.

Существуют CD-R и DVD-R-диски (R - recordable, записываемый), которые имеют золотистый цвет. Информация на такие диски может быть записана, но только один раз. На дисках CD-RW и DVD-RW (RW - ReWntable, перезаписываемый), которые имеют "платиновый" оттенок, информация может быть записана многократно.

Для записи и перезаписи на диски  используются специальные CD-RW и DVD-RW-дисководы, которые обладают достаточно мощным лазером, позволяющим менять отражающую способность участков поверхности  в процессе записи диска. Такие дисководы  позволяют записывать и считывать  информацию с дисков с различной  скоростью. Например, маркировка CD-RW-дисковода "40x12x48" означает, что запись CD-R-дисков производится на 40-кратной скорости, запись CD-RW-дисков - на 12-кратной, а чтение - на 48-кратной скорости.

Flash-память. Flash-память - это энергонезависимый тип памяти, позволяющий записывать и хранить данные в микросхемах. Карты flash-памяти не имеют в своем составе движущихся частей, что обеспечивает высокую сохранность данных при их использовании в мобильных устройствах (портативных компьютерах, цифровых камерах и др.).

Flash-память представляет собой микросхему, помещенную в миниатюрный плоский корпус. Для считывания или записи информации карта памяти вставляется в специальные накопители, встроенные в мобильные устройства или подключаемые к компьютеру через USB-порт. Информационная емкость карт памяти может достигать 512 Мбайт.

К недостаткам flash-памяти следует отнести то, что не существует единого стандарта и различные производители изготавливают несовместимые друг с другом по размерам и электрическим параметрам карты памяти.

 

Устройства  для ввода данных

Клавиатура (keyboard) – традиционное устройство ввода данных в компьютер. Клавиатурами оснащены как персональные компьютеры, так и терминалы мэйнфреймов. Клавиатура современного компьютера содержит обычно 101 или 102 клавиши, разделенные на 4 блока:

алфавитно-цифровой блок – содержит клавиши латинского и национального  алфавитов, а также клавиши цифр и специальных символов;

блок управляющих клавиш;

блок расширенной цифровой клавиатуры;

блок навигации.


Компьютерная мышь

Мышь (mouse) была разработана довольно давно (в 60-х годах), но стала широко использоваться только с приходом в мир персональных компьютеров графического пользовательского интерфейса. Обычно мышь, как и клавиатура, подключается к компьютеру с помощью кабеля. Пользоваться мышью легко – вы передвигаете ее по столу, а на экране компьютера синхронно перемещается курсор. Чтобы активизировать некоторую опцию, нужно щелкнуть левой (left) клавишей мыши. С помощью мыши можно также "рисовать" на экране картинки.

Сенсорные экраны 

Сенсорные экраны (touch screens) предназначены для тех, кто не может пользоваться обычной клавиатурой. Пользователь может ввести символ или команду прикосновением пальца к определенной области экрана. Сенсорные экраны используются в основном на сладах продукции, в ресторанах, супермаркетах. К примеру, в магазинах Muse Inc. (Бруклин), продающей компакт-диски, можно прослушать желаемую композицию, прикоснувшись пальцем к ее названию на экране компьютера. Слушая выбранную мелодию, вы можете одним прикосновением вызвать список других композиций исполнителя.

Устройства автоматизированного  ввода информации 

Устройства этого типа считывают  информацию с носителя, где она  уже имеется. Примерами таких  систем могут служить кассовые терминалы, сканеры штрих-кодов и другие системы оптического распознавания символов. Одно из преимуществ устройств автоматизированного ввода данных состоит в том, что при их использовании исключаются некоторые ошибки, неизбежные при вводе информации с клавиатуры. Сканер штрих-кодов делает менее чем одну ошибку на 10000 операций, в то время как обученный наборщик ошибается один раз при вводе каждых 1000 строк. 
Основные вида устройств автоматизированного ввода информации – системы распознавания магнитных знаков, системы оптического распознавания символов, системы ввода информации на базе светового пера, сканеры, системы распознавания речи, сенсорные датчики и устройства видеозахвата. 
Системы распознавания магнитных знаков (Magnetic Inc Character Recognition, MICR) используются в основном в банковской сфере. В нижней части обычного банковского чека находится код, нанесенный специальными магнитными чернилами. В коде содержится номер банка, номер расчетного счета и номер чека. Система считывает информацию, преобразовывает ее в цифровую форму и передает в банк для обработки. 
Системы оптического распознавания символов (Optical Character Recognition, OCR) преобразуют специальным образом нанесенную на носитель информацию в цифровую форму. Наиболее широко используемые устройства этого типа – сканеры штрих-кодов (bar-code scanners), которые применяются в кассовых терминалах магазинов. Эти системы используются также в больницах, библиотеках, на военных объектах, складах продукции и в компаниях по перевозке грузов. В дополнение к данным, идентифицирующим предмет, на который нанесен штрих-код, последний может содержать информацию о времени, дате и физическом положении предмета; таким образом, можно, например, отслеживать передвижение груза. 
Ручные устройства распознавания информации, такие как перьевые планшеты, особенно полезны для людей, работающих в сферах сбыта продукции и сервиса – такие работники избегают "общения" с клавиатурой. Устройства перьевого ввода обычно содержат плоский экран и световое перо, похожее на шариковую ручку. Перьевые планшеты преобразуют буквы и цифры, написанные пользователем на экране, в цифровую форму, и передают эти данные в компьютер для обработки. Например, United Parcel Service (UPS), известнейшая в мире компания по доставке грузов, заменила обычные планшеты с листками бумаги, использовавшиеся водителями, на портативные перьевые планшеты. Эти устройства используются для подтверждения заказов, и передачи другой информации, необходимой для погрузки и доставки грузов. К недостаткам систем данного вида следует отнести недостаточную точность распознавания информации, написанной от руки. 
Сканеры (scanners) преобразуют в цифровую форму графическую информацию (рисунки, чертежи и пр.) и большие объемы текстовой информации. Системы распознавания речи (voice inputdevices) преобразуют в цифровую форму произносимые пользователем слова. Существует два режима работы подобных устройств. В режиме управления (command mode) вы произносите команды (такие как "открыть документ", "запустить программу" и т.д.), которые выполняются компьютером. В режиме диктовки (dictation mode) можно надиктовывать компьютеру любой текст. К сожалению, точность распознавания речи таких систем оставляет желать лучшего. Человеческий голос имеет множество оттенков, на точность распознавания может повлиять интонация, громкость речь, окружающий шум, даже банальный насморк. Тем не менее, работа над совершенствованием этих устройств ввода информации продолжается и, несомненно, у них большое будущее. Некоторые отделения Почтовой службы США используют системы распознавания речи для повышения эффективности труда работников, занятых упаковкой и сортировкой почтовых грузов. Вместо того чтобы вводить ZIP-код, работник произносит его, в то время как его руки заняты упаковкой. 
Сенсорные датчики (sensors) – это устройства для ввода в компьютер пространственной информации. Например, корпорация General Motors использует сенсоры в своих легковых автомобилях для передачи в бортовой компьютер машины данных об окружающем пространстве и маршруте. Сенсорные датчики также нашли применение в системах виртуальной реальности, игровых приставках и симуляторах. 
Устройства видеозахвата (video capture devices) представляют собой небольшие цифровые видеокамеры, соединенные с компьютером. Устройства видеозахвата применяются в основном в системах видеоконференций, которые получают все большее распространение. Благодаря развитию локальных сетей и Интернет, появилась возможность организовывать видеоконференцсвязь, находясь в любой точке планеты.

Информация о работе Структурная схема ЭВМ