Автор работы: Пользователь скрыл имя, 06 Апреля 2012 в 16:45, контрольная работа
Архитектура компьютера обычно определяется совокупностью ее свойств, существенных для пользователя. Основное внимание при этом уделяется структуре и функциональным возможностям машины, которые можно разделить на основные и дополнительные рисунок блок-схема..
Основные функции определяют назначение ЭВМ: обработка и хранение информации, обмен информацией с внешними объектами.
Дополнительные функции повышают эффективность выполнения основных функций: обеспечивают эффективные режимы ее работы, диалог с пользователем, высокую надежность и др.
Названные функции ЭВМ реализуются с помощью ее компонентов: аппаратных и программных средств.
3 Крылова А. А. Структура и состав ПЭВМ и их технические характеристики
1.Структурная схема ПЭВМ.
1.1Состав и технические характеристики ПЭВМ.
1.1.1 Понятие архитектуры.
Архитектура компьютера обычно определяется совокупностью ее свойств, существенных для пользователя. Основное внимание при этом уделяется структуре и функциональным возможностям машины, которые можно разделить на основные и дополнительные рисунок блок-схема..
Основные функции определяют назначение ЭВМ: обработка и хранение информации, обмен информацией с внешними объектами.
Дополнительные функции повышают эффективность выполнения основных функций: обеспечивают эффективные режимы ее работы, диалог с пользователем, высокую надежность и др.
Названные функции ЭВМ реализуются с помощью ее компонентов: аппаратных и программных средств.
Функциональные возможности ЭВМ:
1) ввод программы и данных с клавиатуры, НГМД, НЖМД;
2) вывод программ и данных на экран видеомонитора, НГМД, НЖМД, принтер;
3) арифметическая и логическая обработка информации;
4) корректировка данных, редактирование программ;
5) хранение программ и промежуточных данных.
В состав типовой ЭВМ входят:
− центральный процессор;
− внутренняя память со своим интерфейсом;
− устройства ввода-вывода со своим интерфейсом, включающие устройства внешней памяти (НГМД, НЖМД), клавиатура, модуль отображения информации, принтер;
− интерфейс – совокупность средств сопряжения и связи устройств компьютера, обеспечивающая их эффективное взаимо-действие.
Рисунок блок-схема 1. Архитектура ЭВМ.
1.1.2.Структура компьютера
Структура компьютера - это некоторая модель, устанавливающая состав, порядок и принципы взаимодействия входящих в нее компонентов (рис 2).
Персональный компьютер (ПК) это настольная или переносная ЭВМ, удовлетворяющая требованиям общедоступности и универсальности применения.
Рис. 2. Структурная схема персонального компьютера
Достоинствами ПК являются:
− малая стоимость, находящаяся в пределах доступности для индивидуального покупателя;
− автономность эксплуатации без специальных требований к условиям окружающей среды;
− гибкость архитектуры, обеспечивающая адаптивность к разнообразным применениям в сфере управления, науке, образовании, быту;
− "дружественность" операционной системы и прочего программного обеспечения, обусловливающая возможность работы с ней пользователя без специальной, профессиональной подготовки;
− высокая надежность работы.
2. Состав и назначение основных блоков и узлов ПЭВМ
2.1. Назначение основных устройств ЭВМ
1. Микропроцессор это центральный блок ЭВМ, предназначенный для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией.[1]
В состав микропроцессора входят:
− устройство управления (УУ), формирующее и подающее во все блоки машины в нужные моменты определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполняемой операции и результатами предыдущей операции. МП формирует адреса ячеек памяти операндов, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ;
− арифметико-логическое устройство (АЛУ) предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией;
− микропроцессорная память (МПП) служит для кратковременного хранения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины;
− интерфейсная система микропроцессора реализует сопряжение и связь с другими устройствами ПК. Включает в себя внутренний интерфейс МП, буферные запоминающие регистры, схемы управления портами ввода-вывода (ПВВ) и системную шину.
2. Генератор тактовых импульсов генерирует последовательность электрических импульсов, их частота определяет тактовую частоту машины.
Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы машины.
Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы.
3. Основная память (ОП) предназначена для хранения и оперативного обмена информацией с прочими блоками машины.
ОП содержит два вида запоминающих устройств: постоянное запоминающие устройство (ПЗУ) и оперативное запоминающее устройство (ОЗУ).
ПЗУ служит для хранения неизменяемой (постоянной) программы и справочной информации, что позволяет оперативно только считывать хранящуюся в нем информацию (изменить информацию в ПЗУ нельзя). ПЗУ является энергонезависимым.
ОЗУ предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ПК в текущий период времени.
Главными достоинствами оперативной памяти являются ее высокое быстродействие и возможность обращения к каждой ячейке памяти отдельно (прямой адресный доступ к ячейке).
В качестве недостатка ОЗУ следует отметить невозможность сохранения информации в ней после выключения питания машины, т. е. энергозависимость.
4. Внешняя память относится к внешним устройствам ПК и используется для долговременного хранения любой информации, которая может когда-либо потребоваться для решения задач.
Во внешней памяти хранится все программное обеспечение компьютера. Она содержит разнообразные виды запоминающих устройств. Наиболее распространенными, имеющимися практически в любом компьютере, являются накопители на жестких (НЖМД) и гибких (НГМД) магнитных дисках.
В качестве устройства внешней памяти используются также запоминающие устройства: на кассетной магнитной ленте (стримеры), накопители на оптических дисках (CD-ROM Compact Disk Read Only Memory компакт-диск с памятью, только читаемой) и др.
5. Источник питания это блок, содержащий системы автономного и сетевого энергопитания ПК.
6. Таймер внутримашинные электронные часы, обеспечивающие при необходимости автоматический съем текущего момента времени (год, месяц, часы, минуты, секунды и доли секунд). Таймер подключается к автономному источнику питания аккумулятору и при отключении машины от сети продолжает работать.
7. Внешние устройства (ВУ) важнейшая составная часть любого вычислительного комплекса. Достаточно сказать, что стоимость ВУ иногда составляет 5080 % стоимости всего ПК. От состава и характеристик ВУ во многом зависят возможность и эффективность применения ПК в системах управления и народном хозяйстве в целом.
ВУ ПК обеспечивают взаимодействие машины с окружающей средой: пользователями, объектами управления и другими ЭВМ. ВУ весьма разнообразны и могут быть классифицированы по ряду признаков.
По назначению ВУ можно разделить:
на внешние запоминающие устройства (ВЗУ), или внешнюю память ПК;
диалоговые средства пользователя;
устройства ввода информации;
устройства вывода информации;
средства связи и телекоммуникации;
средства мультимедиа.
Внешние запоминающие устройства были рассмотрены ранее.
Диалоговые средства пользователя включают в свой состав видеомониторы (дисплеи), реже пультовые пишущие машинки (принтеры с клавиатурой) и устройства речевого ввода-вывода информации.
К устройствам ввода информации относятся:
клавиатура устройство для ручного ввода числовой, текстовой и управляющей информации в ПК;
графические планшеты (диджитайзеры) для ручного ввода графической информации путем перемещения по планшету специального указателя (пера);
сканеры (читающие автоматы) для автоматического считывания с бумажных носителей информации и ввода в ПК машинописных текстов, графиков, рисунков, чертежей;
манипуляторы (устройства указания): джойстик, мышь, трекбол (шар в оправе), световое перо и др. для ввода графической информации на экран дисплея путем управления движением курсора по экрану с последующим кодированием координат курсора и вводом их в ПК;
сенсорные экраны для ввода отдельных элементов изображения, программ или команд с полиэкрана дисплея в ПК.
К устройствам вывода информации относятся:
принтеры печатающие устройства для переноса информации на бумажный носитель информации;
графопостроители (плоттеры) для вывода графической информации (графиков, чертежей, рисунков) из ПК на бумажный носитель;
Устройства связи и телекоммуникации используются для связи с приборами, другими средствами автоматизации и для подключения ПК к каналам связи.
Средства мультимедиа это комплекс аппаратных и программных средств, позволяющих человеку общаться с компьютером, используя самые разные, естественные для себя среды: звук, видео, графику, тексты, анимацию и др.
К средствам мультимедиа относятся устройства речевого ввода и вывода информации, высококачественные видео- и звуковые платы, платы видеозахвата (videograbber), снимающие изображение с видеомагнитофона или видеокамеры и вводящие его в ПК; высококачественные акустические и видеовоспроизводящие системы с усилителями, звуковыми колонками, большими видеоэкранами. С большим основанием к средствам мультимедиа относят внешние запоминающие устройства большой емкости на оптических дисках, часто используемые для записи звуковой и видеоинформации.
Дополнительные схемы.
К системной шине и к МП ПК наряду с типовыми внешними устройствами могут быть подключены и некоторые дополнительные платы с интегральными микросхемами, расширяющие и улучшающие функциональные возможности микропроцессора: математический сопроцессор, контроллер прямого доступа к памяти, сопроцессор ввода-вывода, контроллер прерываний и др.
Математический сопроцессор широко используется для ускоренного выполнения операций над двоичными числами с плавающей точкой, двоично-кодированными десятичными числами для вычисления некоторых трансцендентных функций.
Математический сопроцессор имеет свою систему команд и работает параллельно с основным МП, но под управлением последнего. Ускорение операций происходит в десятки раз. Последние модели МП, начиная с МП 80486 DX, включают сопроцессор в свою структуру.
Контроллер прямого доступа к памяти освобождает МП от прямого управления накопителями на магнитных дисках, что существенно повышает эффективное быстродействие ПК. Без контроллера обмен данными между ВЗУ и ОЗУ осуществляется через регистр МП, а при его наличии данные непосредственно передаются между ВЗУ и ОЗУ, минуя МП.
Сопроцессор ввода-вывода за счет параллельной работы с МП значительно ускоряет выполнение процедур ввода-вывода при обслуживании нескольких внешних устройств (дисплея, принтера, НЖМД, НГМД и др.), освобождает МП от обработки процедур ввода-вывода, в том числе реализует режим прямого доступа к памяти.
Контроллер прерываний.
Прерывание это временный останов выполнения одной программы в целях оперативного выполнения другой, в данный момент более важной (приоритетной), программы.
В ЭВМ используются три вида прерываний: аппаратные, пользовательские, программные.
Прерывания возникают при работе компьютера постоянно. Все процедуры ввода-вывода информации выполняются по прерываниям. Например: прерывания от таймера возникают и обслуживаются контроллером прерываний 18 раз в секунду.
Контроллер прерываний обслуживает процедуры прерывания, принимает запрос на прерывание от внешних устройств, определяет уровень приоритета этого запроса и выдает сигнал прерывания в МП. Получив этот сигнал, МП приостанавливает выполнение текущей программы и переходит к выполнению специальной программы обслуживания того прерывания, которое запросило внешнее устройство. После завершения программы обслуживания восстанавливается выполнение прерванной программы. Контроллер прерываний является программируемым.
Системная шина это основная интерфейсная система компьютера, обеспечивающая сопряжение и связи всех его устройств между собой. Она включает в себя (рис.3.):