Технологии визуализации учебной информации

Автор работы: Пользователь скрыл имя, 27 Апреля 2013 в 15:53, курсовая работа

Описание работы

Одним из средств улучшения профессиональной подготовки будущих учителей, способных к педагогическим инновациям, к разработке технологий проектирования эффективной учебной деятельности школьника в условиях доминирования визуальной среды, считается формирование у них особых умений визуализации учебной информации.
По данным психологов новая информация усваивается и запоминает лучше тогда, когда знания и умения «запечатлеваются» в системе визуально-пространственной памяти, следовательно представление учебного материала в структурированном виде позволяет быстрее и качественнее усваивать новые системы понятий, способы действий.

Содержание работы

ВВЕДЕНИЕ 3
I. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕХНОЛОГИИ ВИЗУАЛИЗАЦИИ 5
II. РОЛЬ МЕТОДОВ ВИЗУАЛИЗАЦИИ УЧЕБНОЙ ИНФОРМАЦИИ В ОБУЧЕНИИ 11
III. ЭЛЕКТРОННЫЕ НАГЛЯДНЫЕ СРЕДСТВА ОБУЧЕНИЯ НА ОСНОВЕ СОВРЕМЕННЫХ КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ 17
IV. ТЕХНОЛОГИИ ВИЗУАЛИЗАЦИИ ЗНАНИЙ И ПРЕЗЕНТАЦИИ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ В СФЕРЕ ОБРАЗОВАНИЯ 22
ЗАКЛЮЧЕНИЕ 25
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 26

Файлы: 1 файл

Курсовая работа.doc

— 308.50 Кб (Скачать файл)

Особое значение для характеристики электронной  наглядности, созданной на основе современных  информационных технологий,  имеет  и такое свойство, как мультимедийность. Оно связано с современными информационными технологиями, основанными на одновременном использовании различных средств представления информации и представляющей совокупность приемов, методов, способов и средств сбора, накопления, обработки, хранения, передачи, продуцирования аудиовизуальной, текстовой, графической информации в условиях интерактивного взаимодействия пользователя с информационной системой, реализующей возможности мультимедиа-операционных сред. Технологии мультимедиа позволяют интегрировано представить на экране любую аудиовизуальную информацию, реализуя интерактивный диалог пользователя с системой. Благодаря этому их активно используют при разработке и создании наглядных средств обучения, компонентами которых являются статические и анимированные изображения, а также текстовая и видеоинформация со звуковым сопровождением.

В соответствии с основными характеристиками электронные  наглядные средства можно разделить  на динамические (анимированные), интерактивные  и мультимедийные.

Динамическая (анимированная) наглядность – это средство обучения, представляющее собой движущееся, изменяющееся изображение. Оно позволяет сформировать наглядные представления о развитии событий и процессов во времени и пространстве, сконцентрировать внимание обучающихся на конкретном объекте изучения, повысить плотность занятия за счет ускорения подачи информации. Управление ограничивается функциями проигрывания, остановки и паузы, что, между прочим, указывает на ограниченную, в данном случае временную, интерактивность динамической (анимированной) наглядности.

Динамическая (анимированная) наглядность включает в себя такие конкретные наглядные средства обучения как анимированные карты, анимированные схемы, диаграммы, графики, слайд-шоу.

Интерактивная наглядность – это средство обучения, представляющее собой гипертекстовую анимированную иллюстрацию в сочетании с набором инструментов управления, позволяющих пользователю взаимодействовать с ним в диалоговом режиме.

В настоящее  время учителями используются интерактивные  карты, интерактивные схемы, интерактивные  планы объекта, интерактивные реконструкции  и пр.

Мультимедийная наглядность – это средство обучения,  в котором интегрированы информационные объекты различных типов: звук, текст, изображение.

В качестве примера  мультимедийной наглядности можно  привести мультимедиалекции, мультимедиапанорамы, электронный звуковой плакат.

К сожалению, в настоящее время использование  наглядных средств обучения, созданных  на основе современных информационных технологий вызывает у многих учителей заметные трудности, связанные с  отбором средств наглядности  для решения конкретных педагогических задач, приемов и методов работы с ними и форм организации учебной деятельности.

  1. Технологии визуализации знаний и презентации результатов исследований в сфере образования

 Развитие  вычислительной техники решило  вопросы обработки такого объема информации. Но возникла проблема наглядно представить результаты такой обработки. Здесь применяются различные методы визуализации, посредством которых легко можно представлять большие и сложные объемы данных. Системы распознавания визуальных образов – 2-х мерные (символы, граф. знаки, коды, штрих-коды) – FineReader и 3-х мерные объектов (фотоизображения, охранные и видеосистемы) – встроенное в современном фотооборудовании, технологии использования машинного зрения (работа компьютерных систем с массивами данных).

Графики и схемы  упрощают восприятие и облегчают  восприятие текста человеком. Иногда нескольких схем достаточно для того, чтобы  понять смысл изложенного на нескольких страницах проекта.

Цветовое кодирование  применяется в исследованиях  для анализа и прогнозирования различных физических и математических процессов. Например, в исследовании теплопроцессов, энергопередачи можно наглядно продемонстрировать распределение и тренд температуры в цветовом решении, в социологических процессах, иллюстрировать природные явления.

Бурное развитие 3-х мерной графики – научная  визуализация сформировалась в самостоятельную  отрасль науки, вобрав в себя основы дифференциального исчисления, геометрии, программирования. Переход на 3D-технологии превратил графику из средства представления в мощный метод решения научных проблем. Трехмерная визуализация может широко применяться для образовательных систем в различных областях науки. Обучение с использованием трехмерных моделей очень наглядно и позволяет разнообразить формы подачи материала и повышать интерес слушателя.

Наибольшее  значение виртуальная визуализация имеет в интерактивных системах обучения, таких, как разнообразного вида тренажеры.

Специалистам, использующим аудио и визуальные технологии в своей профессиональной деятельности, необходимо перманентное повышение квалификации. Так как они обычно уже имеют базовое образование, то слежение за развитием новых технологий, методик использования новых программных продуктов и решений может быть реализовано через дистанционные формы. Здесь имеется в виду кейс-технологии, различные формы удаленного тестирования и аттестации, веб-конференции и тому подобное.

Интернет плюс проектная деятельность с использованием средств ИКТ сегодня мощный инструмент, как в образовательной, так и в социальной сфере для продвижения новых методологий обучения, развития бизнеса и повышения компетенции специалиста, но пользоваться им необходимо умело. В условиях современных информационных и социальных реалий назрела необходимость нового методологического подхода к преподаванию таких дисциплин, связанных с использованием компьютерной графики, аудиовизуальных средств.

Тенденции развития современных информационных технологий приводят к постоянному возрастанию  сложности информационных систем (ИС), и соответственно содержанию дисциплин их изучения для различных специализаций. Современные дисциплины в области ИКТ характеризуются следующими особенностями: сложность описания (большое количество функций, процессов, элементов данных и сложные взаимосвязи между ними), что требует изучения законов и методик моделирования и анализа данных и процессов, а также новых интеллектуальных инструментов.

Методика современного преподавания с использованием компьютерной графики и аудиовизуальных средств  должна ориентироваться на будущие и современные технологии, в том числе и на тенденции развития способов использования информационно-компьютерных средств и технологий. В современной методике конечно должны быть представлены необходимые технические условия, программное обеспечение и требования к пользователю, которые создают условия для обращения к цифровой графике и компьютерному дизайну. Но еще более важно то, что в состав учебно-методических комплексов должна быть заложена изначально возможность их модернизации и интеграции с динамичным изменением информационного ресурса.

 

 

 

 

 

 

 

 

ЗАКЛЮЧЕНИЕ

В данной курсовой работе были рассмотрены технологии визуализации учебной информации, которые позволяют вариативно и рационально использовать различные схемно-знаковые модели представления знаний; устранить несбалансированность текстового и иллюстративного зрительного ряда, «забитость» текстом; повысить выразительность визуального языка и символики, приобретающих особую значимость в век информационных технологий; оптимизировать затраты времени на восприятие и усвоение информации и тем самым повысить эффективность учебно-познавательной деятельности.

 

 

 

 

 

 

 

 

 

 

 

 

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

    1. Российская педагогическая энциклопедия: В 2 т./ Гл. ред. В.В. Давыдов.– М.: Большая Российская энциклопедия, 1993.– Т.2.– 608 с.
    2. Чошанов М.А. Гибкая технология проблемно-модульного обучения: Метод. пособ.– М.: Народное образование, 1996.– 160 с.
    3. Эрдниев П.М. Системность знаний и укрепление дидактической единицы //Сов. Педагогика.-1975.-№4.-С. 72-80.
    4. Калмыкова З.И Развивает ли продуктивное мышление система обучения В.Ф. Шаталова?//Вопросы психологии. – 1987.-№2.С. 71-80.
    5. Селевко Г.К. Современные образовательные технологии: Учеб. пособ.– М.: Народное образование, 1998.– 256 с.
    6. Манько, Н.Н. Когнитивная визуализация дидактических объектов в активизации учебной деятельности // Известия алтайского государственного университета. Серия: Педагогика и психология. – № 2. – 2009. – С. 22-28.
    7. Вербицкий, А. А. Активное обучение в высшей школе: контекстный подход / А. А. Вербицкий. – М.: Высш. шк., 1991. – 207 с.
    8. Блейк, С., Пейп, С., Чошанов, М. А. Использование достижений нейропсихологии в педагогике США // Педагогика. – № 5. – 2004. – С. 85-90.
    9. Петров, А.В. Развивающее обучение. Основные вопросы теории и практики вузовского обучения физике: монография / А.В. Петров. – Челябинск: Издательство ЧГПУ «Факел», 1997.
    10. Лозинская А. М. Фреймовый способ структурирования содержания модульной программы обучения физике / А. М. Лозинская // Известия Уральского государственного университета. – 2009. – № 3(67). – С. 176-184.
    11. Электронный источник: http://pedsovet.org/component/option,com_mtree/task,viewlink/link_id,10186/Itemid,118/
    12. Электронный источник: http://www.ict.edu.ru/vconf/files/8553.pdf

 



Информация о работе Технологии визуализации учебной информации