Автор работы: Пользователь скрыл имя, 17 Июня 2013 в 14:00, курсовая работа
Имитационное моделирование (simulation) является одним из мощнейших методов анализа экономических систем.
В общем случае, под имитацией понимают процесс проведения на ЭВМ экспериментов с математическими моделями сложных систем реального мира.
Цели проведения подобных экспериментов могут быть самыми различными – от выявления свойств и закономерностей исследуемой системы, до решения конкретных практических задач. С развитием средств вычислительной техники и программного обеспечения, спектр применения имитации в сфере экономики существенно расширился. В настоящее время ее используют как для решения задач внутрифирменного управления, так и для моделирования управления на макроэкономическом уровне. Рассмотрим основные преимущества применения имитационного моделирования в процессе решения задач финансового анализа.
Курсовая работа
Тема:
«Технология имитационного моделирования в среде MS Excel»
Имитационное моделирование (simulation) является одним из мощнейших методов анализа экономических систем.
В общем случае, под имитацией понимают процесс проведения на ЭВМ экспериментов с математическими моделями сложных систем реального мира.
Цели проведения подобных экспериментов могут быть самыми различными – от выявления свойств и закономерностей исследуемой системы, до решения конкретных практических задач. С развитием средств вычислительной техники и программного обеспечения, спектр применения имитации в сфере экономики существенно расширился. В настоящее время ее используют как для решения задач внутрифирменного управления, так и для моделирования управления на макроэкономическом уровне. Рассмотрим основные преимущества применения имитационного моделирования в процессе решения задач финансового анализа.
Как следует из определения, имитация – это компьютерный эксперимент. Единственное отличие подобного эксперимента от реального состоит в том, что он проводится с моделью системы, а не с самой системой. Однако проведение реальных экспериментов с экономическими системами, по крайней мере, неразумно, требует значительных затрат и вряд ли осуществимо на практике. Таким образом, имитация является единственным способом исследования систем без осуществления реальных экспериментов.
Часто практически невыполним или требует значительных затрат сбор необходимой информации для принятия решений. Например, при оценке риска инвестиционных проектов, как правило, используют прогнозные данные об объемах продаж, затратах, ценах и т.д.
Однако
чтобы адекватно оценить риск
необходимо иметь достаточное количество
информации для формулировки правдоподобных
гипотез о вероятностных
При решении многих задач финансового анализа используются модели, содержащие случайные величины, поведение которых не поддается управлению со стороны лиц, принимающих решения. Такие модели называют стохастическими. Применение имитации позволяет сделать выводы о возможных результатах, основанные на вероятностных распределениях случайных факторов (величин). Стохастическую имитацию часто называют методом Монте-Карло. Существуют и другие преимущества имитации.
Мы же
рассмотрим технологию применения имитационного
моделирования для анализа
Имитационное моделирование (ситуационное моделирование) – метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.
Имитационное моделирование – это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему, с которой проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация – это постижение сути явления, не прибегая к экспериментам на реальном объекте).
Имитационное моделирование – это частный случай математического моделирования. Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае аналитическая модель заменяется имитатором или имитационной моделью.
Имитационным моделированием иногда называют получение частных численных решений сформулированной задачи на основе аналитических решений или с помощью численных методов.
Имитационная модель – логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.
К имитационному моделированию прибегают, когда:
Цель имитационного
Имитационное моделирование
Имитация, как метод решения нетривиальных задач, получила начальное развитие в связи с созданием ЭВМ в 1950-х – 1960-х годах.
Можно выделить две разновидности имитации:
Виды имитационного
2. Моделирование рисков инвестиционных проектов
Имитационное
моделирование представляет собой
серию численных экспериментов
призванных получить эмпирические оценки
степени влияния различных
В общем случае, проведение имитационного эксперимента можно разбить на следующие этапы:
Результаты имитационного эксперимента могут быть дополнены статистическим анализом, а также использоваться для построения прогнозных моделей и сценариев.
Осуществим имитационное моделирование анализа рисков инвестиционного проекта на основании данных примера.
Пример 1.
Фирма рассматривает инвестиционный проект по производству продукта «А». В процессе предварительного анализа экспертами были выявлены три ключевых параметра проекта и определены возможные границы их изменений (табл. 1.). Прочие параметры проекта считаются постоянными величинами (табл. 2.).
Таблица 1. Ключевые параметры проекта по производству продукта «А»
Показатели | |||
Наихудший |
Наилучший |
Вероятный | |
Объем выпуска – Q |
150 |
300 |
200 |
Цена за штуку – P |
40 |
55 |
50 |
Переменные затраты – V |
35 |
25 |
30 |
Таблица 2. Неизменяемые параметры проекта по производству продукта «А»
Показатели |
Наиболее вероятное значение |
Постоянные затраты – F |
500 |
Амортизация – A |
100 |
Налог на прибыль – T |
60% |
Норма дисконта – r |
10% |
Срок проекта – n |
5 |
Начальные инвестиции – I0 |
2000 |
Первым
этапом анализа согласно сформулированному
выше алгоритму является определение
зависимости результирующего
Предположим, что используемым критерием является чистая современная стоимость проекта NPV:
(1)
где NCFt – величина чистого потока платежей в периоде t.
По условиям примера, значения нормы дисконта r и первоначального объема инвестиций I0 известны и считаются постоянными в течении срока реализации проекта (табл. 2.).
По условиям
примера ключевыми варьируемыми
параметрами являются: переменные расходы
V, объем выпуска Q и цена P. Диапазоны
возможных изменений
Реализация третьего этапа может быть осуществлена только с применением ЭВМ, оснащенной специальными программными средствами. Поэтому прежде чем приступить к третьему этапу – имитационному эксперименту, познакомимся с соответствующими средствами MS Excel, автоматизирующими его проведение.
Проведение имитационных экспериментов в среде MS Excel можно осуществить двумя способами – с помощью встроенных функций и путем использования инструмента «Генератор случайных чисел» дополнения «Анализ данных» (Analysis ToolPack). В курсовой работе будет использован первый способ проведения имитационных экспериментов – с помощью встроенных функций MS Excel.
Следует отметить, что применение встроенных функций целесообразно лишь в том случае, когда вероятности реализации всех значений случайной величины считаются одинаковыми. Тогда для имитации значений требуемой переменной можно воспользоваться математическими функциями СЛЧИС или СЛУЧМЕЖДУ. Форматы функций приведены в табл. 3.
Таблица 3. Математические функции для генерации случайных чисел
Наименование функции |
Формат функции | |
Оригинальная версия |
Локализованная версия | |
RAND |
СЛЧИС |
СЛЧИС () – не имеет аргументов |
RANDBETWEEN |
СЛУЧМЕЖДУ |
СЛУЧМЕЖДУ (нижн_граница; верхн_граница) |
Информация о работе Технология имитационного моделирования в среде MS Excel