Автор работы: Пользователь скрыл имя, 07 Июня 2013 в 17:05, дипломная работа
Получившая в последнее время развитие практика постепенного внедрения средств видеоконференций в сферу обучения позволит не просто прослушать и увидеть лекцию известного преподавателя, находящегося в другом полушарии, но осуществлять интерактивное общение с помощью видеоконференций.
H.323-совместимые
терминалы могут быть встроены
в персональные компьютеры или
выполнены в виде отдельных
устройств, например, видеотелефонов.
Поддержка обмена звуковыми
Стандарт H.323 разработан с учетом Рекомендаций H.245, описывающих последовательность специальных процедур при открытии логического канала передачи информации. Эти процедуры, определяющие содержание логического канала, необходимы для согласования передающего устройства с приемным - таким образом, передатчик будет транслировать только ту информацию, которую способен воспринять приемник. Приемник может потребовать от передатчика ведения обмена данными в нужном ему режиме. Поскольку аналогичные процедуры, описанные стандартом H.245, предлагаются также в Рекомендациях H.310 для ATM-сетей, H.324 для GSTN и V.70, взаимодействие H.323-систем с системами на их основе возможно без преобразования H.242-H.245, как этого потребовали бы системы стандарта H.320.
Терминалы стандарта
H.323 могут работать в многоточечных
конфигурациях и
Для передачи видеоизображения стандарт Н.323 требует использования стандарта Н.261.
Видеопоток стандарта Н.261.
Рекомендация ITU-T Н.261. была разработана для передачи видеоинформации при уровнях битового потока Рх64 Кбит/с, где р - может меняться от1 до 30. Стандарт включает как кодирование отдельных кадров в стиле JPRG, так и использование компенсации движения для устранения временной корреляции между кадрами. Он относится к гибридным системам сжатия в пространственной и временной областях.
Burst bandwidth assumes that the transfer of video occurs only during the active period.
Continuous bandwidth assumes entire frame time is used to transfer active video
Форматы исходных данных CIF QCIF
Формат |
Разрешение |
Ширина Полосы Частот | ||
Мбайт/сек (1)
|
Мбайт/сек (непрерывный) | |||
QCIF |
216x156 |
176x144 |
1.69 |
1.27 |
CIF |
432x312 |
352x288 |
6.74 |
5.07 |
Для того, чтобы обеспечить преобразование данных различных систем телевидения к единому стандарту, был разработан стандарт CIF (общий промежуточный стандарт). Для яркостной компоненты Y разрешение составляет 288 по вертикали и 360 пикселов по горизонтали, из которых не используется по четыре крайних пиксела с каждой стороны для обеспечения кратности 16 Используется цветовая модель - 4:2:0 с серединным расположением пикселов цветности. Для яркости используется разрешение 352х288 ( область значимых пикселов, а для обоих цветоразностных компонентов разрешение - 176х144. Используется также формат QCIF с половинным разрешением.
Частота кадров составляет 29,97 кадров/сек, но может быть и понижена до 10-15 кадров/се. Декодер должен способен рас кодировать поток с пропущенными кадрами , так. Как для увеличения сжатия предусмотрена возможность опускать при кодировании отдельные кадры вместо того, чтобы поддерживать постоянную частоту кадров.
Стандартом предусмотрено разбиение видео потока на четыре уровня:
- уровень кадров ( для CIF-формата - 352х288 пикселов, 396 макроблока, 1584 блока, 12 групп блоков):
Алгоритм кодирования.
Стандарт не специализирует конкретных методов сжатия, и поиск наиболее эффективных алгоритмов сжатия является задачей разработчиков кодера. Для передачи CIF изображения по каналу (64 кбит/сек) степень сжатия должна превышать 300:1. В алгоритме кодирования можно выделить следующие этапы:
1.Входной поток
подвергается предварительной
Если исходное изображение передается в виде чересстрочных полей, то из них формируются кадры с прогрессивной разверткой, кадры передискретизиуются до формата CIF или QCIF;
Производится преобразование RGB в YUV
Производится преобразование из формата цветности 4:4:4 в 4:2:0 ( горизонтальная и вертикальная поддискретизация цветоразностных компонентов).
Эта схема преобразования обычно используется для стандарта Н. 261 .
На рис.5
изображена двумерная 2:1 подвыборка
цветоразностных элементов по
отношению к элементам яркости.
Для устранений возможных искажений типа появления ложных элементов на границе объектов или смещения позиции, может применяться перефильтрация низкочастотным фильтром.
2.Изображение
разбивается на макроблоки , для
которых находятся вектора
3.Находятся ошибки предсказания движения.
4.Производится
анализ информации о движении
и принимается решение о
5.В зависимости
от результатов предыдущей
6.Осуществляется квантование коэффициентов ДКС, Z- упорядочивание, и кодирование кодами переменой длины. На этом этапе необходимо строить выходной поток данных , поддерживая заданное значение битового потока, для чего требуется специальный алгоритм выбора уровня квантования коэффициентов: если заполнение буфера оказывается больше заданной пороговой величины, то уменьшается точность передачи данных.
Кодирование I- блоков.
Процедура кодирования I-блоков похода на методику кодирования неподвижных блоков стандарт JPEG. Однако в отличии от JPEG уровень квантования может быть переменным, и коэффициент квантования подбирается кодером.
Кодирование Р-блоков.
Процедура кодирования
Р-блоков гораздо сложнее процедуры
кодирования неподвижных
1.Принимается
решение, следует ли
В Р- блоках вектор движения передается с помощью разностного кодирования, что обеспечивает значительную экономию для изображений с движением, вызванным перемещением камеры, в которых вектора движения для большинства микроблоков будут примерно одинаковы.
2. После получения
информации об оптимальном варианте
компенсации движения кодер
Дисперсия V1 для текущего макроблока вычисляется:
V1 = ,
А дисперсия V2 - - для разностного сигнала , полученного с учетом принятого решения о компенсации движения, т. е. С использование вектора движения (N,M), нулевого или ненулевого по формуле:
V1 = X(i+n,j+m))/256
Для устранения блокинг -эффекта, связанного с компенсацией движения, может производится фильтрация. Фильтрация осуществляется только внутри блока и применяется как к яркостной , так и к цветоразностным компонентам. Фильтрация ошибок в кодере после компенсации движения дает лучшие результаты, чем постфильтрация в декодере.
4. После квантования
принимается решение, следует
ли изменять коэффициент квантования,
установленный по умолчанию.
Промышленные стандарты призваны сделать видеоконференции столь же распространенными, как телефонная и факсимильная связь. Благодаря им системы поддержки видеоконференций разных производителей могут без проблем устанавливать связь между собой, как связываются между собой другие телекоммуникационные устройства.
Продукты, соответствующие стандартам ITU, позволяют любому абоненту связываться с любым другим абонентом. Стандарты, разработанные сектором стандартизации в области телекоммуникаций ITU (ITU-TSS, предыдущее название - CCITT), сделали для систем поддержки видеоконференций для ПК то, что сделали ранее выработанные стандарты "V.xx" и "Group-III" для модемов и факсимильных аппаратов - обеспечили совместимость изделий разных производителей в мировом масштабе.
Глава 3. Разработка структурной схемы устройства кодирования-декодирования
п. 3.1 Выбор элементной базы для абонентского устройства
В качестве демултиплексера выбираем микросхему фирмы GEC PLESSEY VP 2614.
Видео демультиплексор является частью набора микросхем для видеоконференций, видеотелефонии и мультимединых приложений. Используется для протокола Н. 261. Демультиплексор работает с входными данными до 4 Мбит/сек. Интерфейс разработан для декодера VP2615
Рассмотрим работу структурной схемы :
Это устройство извлекает из потока Н. 261. параметры, корректирующие ошибки, и коэффициенты ДКП
FRAME ALIGNMET:
непрерывный битовый поток Н.261 разбивается на кадры по 512 бит , первый бит каждого кадра является частью восьмибитового заголовка кадра. Для предотвращения ошибочного детектирования настоящих данных заголовок должен повторяться не менее трех раз перед сигналом “frame lock”. После того, как получен этот сигнал он начинает постоянно отслеживаться. Если происходит ошибочное определение кадра , то следующие 4 кадра будут проверены на ошибки.
VALIDITY CHEK - проверка правильности ( верности) информации потока
VARIABLE LENGTH DECODE - декодирование
с переменной длиной. Декодирование
информации видеопотока,
HOST INTERFACE - интерфейс компьютера
Интерфейс системного процессора.
Интерфейс системного
процессора является интерфейсом с
картой памяти. Он был разработан для
использования с любым
HD7:0 - шина данных процессора
YF 3:0 - младшее значение бита адресной шины
WR - строб записи
RD - строб чтения
CEN -выбор микросхемы
SIDE INFORMATION - блок выделения служебных данных
ДЕКОДЕР