Автор работы: Пользователь скрыл имя, 15 Мая 2015 в 16:18, реферат
При различных сочетаниях в изучаемом процессе или явлении этих факторов зависимость уровней ряда от времени может принимать различные формы. Во-первых, большинство временных рядов экономических показателей имеют тенденцию, характеризующую долговременное совокупное воздействие множества факторов на динамику изучаемого показателя. Очевидно, что эти факторы, взятые в отдельности, могут оказывать разнонаправленное влияние на исследуемый показатель. Однако в совокупности они формируют его возрастающую или убывающую тенденцию.
ВРЕМЕННОЙ РЯД И ЕГО ОСНОВНЫЕ ЭЛЕМЕНТЫ
АВТОКОРРЕЛЯЦИЯ УРОВНЕЙ ВРЕМЕННОГО РЯДА И ВЫЯВЛЕНИЕ ЕГО СТРУКТУРЫ
МОДЕЛИРОВАНИЕ ТЕНДЕНЦИИ ВРЕМЕННОГО РЯДА
МЕТОД НАИМЕНЬШИХ КВАДРАТОВ
ПРИВЕДЕНИЕ УРАВНЕНИЯ ТРЕНДА К ЛИНЕЙНОМУ ВИДУ
ОЦЕНКА ПАРАМЕТРОВ УРАВНЕНИЯ РЕГРЕССИИ
АДДИТИВНАЯ И МУЛЬТИПЛИКАТИВНАЯ МОДЕЛИ ВРЕМЕННОГО РЯДА
СТАЦИОНАРНЫЕ ВРЕМЕННЫЕ РЯДЫ
ПРИМЕНЕНИЕ БЫСТРОГО ПРЕОБРАЗОВАНИЯ ФУРЬЕ К СТАЦИОНАРНОМУ ВРЕМЕННОМУ РЯДУ
АВТОКОРРЕЛЯЦИЯ ОСТАТКОВ. КРИТЕРИЙ ДАРБИНА- УОТСОНА
СОДЕРЖАНИЕ
ВРЕМЕННОЙ РЯД И ЕГО ОСНОВНЫЕ ЭЛЕМЕНТЫ
АВТОКОРРЕЛЯЦИЯ УРОВНЕЙ ВРЕМЕННОГО РЯДА И ВЫЯВЛЕНИЕ ЕГО СТРУКТУРЫ
МОДЕЛИРОВАНИЕ ТЕНДЕНЦИИ ВРЕМЕННОГО РЯДА
МЕТОД НАИМЕНЬШИХ КВАДРАТОВ
ПРИВЕДЕНИЕ УРАВНЕНИЯ ТРЕНДА К ЛИНЕЙНОМУ ВИДУ
ОЦЕНКА ПАРАМЕТРОВ УРАВНЕНИЯ РЕГРЕССИИ
АДДИТИВНАЯ И МУЛЬТИПЛИКАТИВНАЯ МОДЕЛИ ВРЕМЕННОГО РЯДА
СТАЦИОНАРНЫЕ ВРЕМЕННЫЕ РЯДЫ
ПРИМЕНЕНИЕ БЫСТРОГО ПРЕОБРАЗОВАНИЯ ФУРЬЕ К СТАЦИОНАРНОМУ ВРЕМЕННОМУ РЯДУ
АВТОКОРРЕЛЯЦИЯ ОСТАТКОВ. КРИТЕРИЙ ДАРБИНА- УОТСОНА
Временной ряд и его основные элементы
Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:
При различных сочетаниях в изучаемом процессе или явлении этих факторов зависимость уровней ряда от времени может принимать различные формы. Во-первых, большинство временных рядов экономических показателей имеют тенденцию, характеризующую долговременное совокупное воздействие множества факторов на динамику изучаемого показателя. Очевидно, что эти факторы, взятые в отдельности, могут оказывать разнонаправленное влияние на исследуемый показатель. Однако в совокупности они формируют его возрастающую или убывающую тенденцию.
Во-вторых, изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, поскольку деятельность ряда отраслей экономики и сельского хозяйства зависит от времени года. При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой временного ряда.
Некоторые временные ряды не содержат тенденции и циклической компоненты, а каждый следующий их уровень образуется как сумма среднего уровня ряда и некоторой(положительной или отрицательной) случайной компоненты.
В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда. Основная задача статистического исследования отдельного временного ряда – выявление и придание количественного выражения каждой из перечисленных выше компонент с тем чтобы использовать полученную информацию для прогнозирования будущих значений ряда.
Автокорреляция уровней временного ряда и выявление его структуры
При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда.
Количественно её можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени. В качестве переменной х мы рассмотрим ряд y2, y3, … , yn; в качестве переменной у – ряд y1, y2, . . . ,yn – 1
Аналогично можно определить коэффициенты автокорреляции второго и более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями уt и yt – 1.Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Некоторые авторы считают целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило – максимальный лаг должен быть не больше (n/4). Отметим два важных свойства коэффициента автокорреляции.
Во-первых, он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.
Во-вторых, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержит положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.
Последовательность коэффициентов автокорреляции уровней первого, второго и т. д. Порядков называют автокорреляционной функцией временного ряда. График зависимости её значений от величины лага (порядка коэффициента корреляции) называется коррелограммой.
Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а, следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, то есть при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.
Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка τ, ряд содержит циклические колебания с периодичностью в τ моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты и циклической, сезонной компоненты.
Моделирование тенденции временного ряда
Одним из наиболее распространенных способов моделирования тенденции временного ряда является построение аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда. Этот способ называют аналитическим выравниванием временного ряда.
Пусть имеются следующие фактические уровни ряда:
у1, у2, . . ., уn.
Характер изменения этих уровней, то есть движения динамического ряда, может быть различным. Нашей задачей является нахождение такой простой математической формулы, которая давала бы возможность вычислить теоретические уровни. Основное требование, предъявляемое к этой формуле, состоит в том, что уровни, исчисленные по ней, должны воспроизводить общую тенденцию фактических уровней.
Поскольку зависимость от времени может принимать разные формы, для ее формализации можно использовать различные виды функций. Для построения трендов чаще всего применяются следующие функции:
yt = a0 + a1t + a2 t 2 + . . . +ak t k .
Аналитическое выравнивание есть не что иное, как удобный способ описания эмпирических данных.
Общие соображения при выборе типа линии, по которой производится аналитическое выравнивание , могут быть сведены к следующим:
1)
Если абсолютные приросты
yt = a0 + a1 t,
где yt считается как у, выровненный по t.
2) Если приросты приростов
уровней, то есть ускорения, колеблются
около постоянной величины, то
за основу аналитического
yt = a0 + a1 t + a2 t 2 .
Показатели а0, а1 и а2 представляют собой в каждом отдельном случае выравнивания постоянные величины, называемые параметрами: а0 –начальный уровень; а1 – начальная скорость ряда и а2 – ускорение или вторая скорость.
3) Если уровни изменяются с приблизительно постоянным относительным приростом, то выравнивание производится по показательной (экспонентной функции):
yt = a0 a1t.
В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путём сравнения коэффициентов автокорреляции первого порядка, рассчитанным по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни yt и y t –1 тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, например, в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.
При обработке информации на компьютере выбор вида уравнения тенденции обычно осуществляется экспериментальным методом , то есть путём сравнения величины остаточной дисперсии Dост, рассчитанной при разных моделях. Имеют место отклонения фактических данных от теоретических (у – уt) .Чем меньше величина остаточной дисперсии, тем лучше данное уравнение подходит к исходным данным.
Метод наименьших квадратов
Для нахождения аналитического уравнения, по которому производится выравнивание уровней временного ряда, применяют различные способы. Один из таких способов – метод наименьших квадратов - основан на требовании о том, чтобы сумма квадратов отклонений фактических данных от выровненных была наименьшей:
(у1 – у1)2 + (у2 – у2)2 + . . . + (уn – yn)2 = S.
S должно быть наименьшим (минимальным)
Принцип, положенный в основу метода наименьших квадратов, может быть записан в сжатом математическом виде следующим образом:
∑ (y – yt)2 = min. (1.4.1)
Из курса математического анализа известно, что при нахождении минимума функции нужно найти частные производные и приравнять их к нулю. Найдём минимум функции, используя уравнение параболы.
Имеем:
∑ (y – yt )2 = S; (1.4.2)
заменяем:
yt = a0 + a1 t + a2 t 2
и получаем:
∑( y - a0 - a1 t - a2 t 2 )2 = S.
Находим частные производные функции S сначала по параметру а0, а затем по а1 и а2, и приравниваем их к нулю. Полученная система называется системой нормальных уравнений для нахождения параметров а0 , а1 и а2 при выравнивании по параболе второго порядка.
При выравнивании по показательной функции yt = a0 a1t параметры а0 и а1 определяются по методу наименьших квадратов отклонений логарифмов
Приведение уравнения тренда к линейному виду
Если тренд представляет собой нелинейную функцию, то методы линейного регрессионного анализа для оценки его параметров неприменимы. Но к некоторым нелинейным функциям мы можем применить такие преобразования, которые приведут нас к линейному уравнению.
Если наш тренд представлен степенной линией регрессии, то есть он имеет вид:
yt = a0ta1, (1.5.1)
то логарифмируя обе части равенства, получим:
ln yt = ln a0 + a1 ln t.
Отсюда видно, что, введя новые переменные
z = ln yt , x = ln t,
мы получим уравнение вида
z = b0 +a1x,
где b0 = ln a0. Это обычное линейное уравнение.
Если линия тренда – парабола второго порядка
yt = a0 + a1 t + a2 t 2 ,
то заменой вида:
х1 = t, x2 = t 2,
мы получим линейную функцию двух переменных:
yt = a0 + a1 х1 + a2 х2 .
Оценку параметров такой функции можно провести методами линейного регрессионного анализа для множественной регрессии. [5, c.29]
Далее приведём основные понятия регрессионного анализа, которые используются для оценки параметров.
Оценка параметров уравнения регрессии
Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции ryt. Существуют разные модификации формулы линейного коэффициента корреляции.Следует иметь в виду, что величина линейного коэффициента корреляции оценивает тесноту связи рассматриваемых признаков в её линейной форме. Поэтому близость абсолютной величины линейного коэффициента корреляции к нулю ещё не означает отсутствия связи между признаками. Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции ryt2, называемый коэффициентом детерминации. Коэффициент детерминации характеризует долю дисперсии результативного признака уt, объясняемую регрессией, в общей дисперсии результативного признака.Соответственно величина 1 – r 2 характеризует долю дисперсии у, вызванную влиянием остальных, не учтённых в модели факторов. Уравнение нелинейной регрессии, так же как и в линейной зависимости, дополняется показателем корреляции, а именно индексом корреляции R. Величина данного показателя находится в границах: