Автор работы: Пользователь скрыл имя, 03 Мая 2013 в 20:33, реферат
Понятие «вычислительный процесс» является одним из основных при рассмотрении операционных систем. Последовательный процесс (иногда называемый «задачей») - это выполнение отдельной программы с её данными на последовательном процессоре. Концептуально процессор рассматривается в двух аспектах: во-первых, он является носителем данных и, во-вторых, он одновременно выполняет операции, связанные с их обработкой.
В качестве примеров можно назвать следующие процессы или задачи: прикладные программы пользователей, утилиты и другие системные обрабатывающие программы.
Порождение нового процесса как дубликата процесса-родителя приводит к возможности существования программ для работы которых организуется более одного процесса. Возможность замены пользовательского контекста процесса по ходу его работы приводит к тому, что в рамках одного и того же процесса могут быть последовательно выполнены несколько различных программ.
После того как процесс наделен содержанием, в PCB дописывается оставшаяся информация и состояние нового процесса изменяется на «готовность». После того, как процесс завершил свою работу, операционная система переводит его в состояние «закончил исполнение» и освобождает все ассоциированные с ним ресурсы, делая соответствующие записи в блоке управления процессом. При этом сам PCB не уничтожается, а остается в системе еще некоторое время. Это связано с тем, что процесс-родитель после завершения процесса-ребенка может запросить операционную систему о причине произошедшей «смерти» порожденного им процесса и статистическую информацию об его работе. Подобная информация сохраняется в PCB мертвого процесса до запроса процесса-родителя или до конца его деятельности, после чего все следы умершего процесса окончательно исчезают из системы. В операционной системе UNIX процессы, находящиеся в состоянии закончил исполнение, принято называть процессами «зомби».
Следует заметить, что в ряде операционных систем (например, в VAX/VMS) гибель процесса-родителя приводит к завершению работы всех его детей. В других операционных системах (например, в UNIX) процессы-дети продолжают свое существование и после окончания работы процесса-родителя.
Мы рассмотрели операции создания и завершения процесса – одноразовые операции. Одноразовые операции приводят к изменению количества процессов, находящихся под управлением операционной системы, и всегда связаны с выделением или освобождением определенных ресурсов. Многоразовые операции, напротив, не приводят к изменению количества процессов в операционной системе и не обязаны быть связанными с выделением или освобождением ресурсов. Ознакомимся с действиями, которые производит операционная система при выполнении многоразовых операций над процессами.
Запуск процесса. Из числа
процессов, находящихся в состоянии «
Приостановка процесса. Работа процесса, находящегося в состоянии исполнение, приостанавливается в результате какого-либо прерывания. Процессор автоматически сохраняет счетчик команд и, возможно, один или несколько регистров в стеке исполняемого процесса и передает управление по специальному адресу обработки данного прерывания. По указанному адресу обычно располагается одна из частей операционной системы. Она сохраняет динамическую часть системного и регистрового контекстов процесса в его PCB, переводит процесс в состояние готовность и приступает к обработке прерывания, то есть к выполнению определенных действий, связанных с возникшим прерыванием.
Блокирование процесса. Процесс блокируется, когда он не может продолжать свою работу, не дождавшись возникновения какого-либо события в вычислительной системе. Для этого он обращается к операционной системе с помощью определенного системного вызова. Операционная система обрабатывает системный вызов (инициализирует операцию ввода-вывода, добавляет процесс в очередь процессов, дожидающихся освобождения устройства или возникновения события, и т. д.) и, при необходимости, сохранив необходимую часть контекста процесса в его PCB, переводит процесс из состояния исполнение в состояние ожидание.
Разблокирование процесса. После возникновения в системе какого-либо события, операционной системе нужно точно определить какое именно событие произошло. Затем операционная система проверяет: находился ли некоторый процесс в состоянии ожидание для данного события и, если находился, переводит его в состояние готовность, выполняя необходимые действия, связанные с наступлением события (инициализация операции ввода-вывода для очередного ожидающего процесса и т. п.).
Определение концепции процесса преследует цель выработать механизмы распределения и управления ресурсами. Термин ресурс обычно применяется по отношению к повторно используемым, относительно стабильным и часто недостающим объектам, которые запрашиваются, используются и освобождаются процессами в период их активности. Другими словами, ресурсом называется всякий объект, который может распределяться внутри системы.
Ресурсы могут быть разделяемыми, когда несколько процессов могут их использовать одновременно (в один и тот же момент времени) или параллельно (в течение некоторого интервала времени процессы используют ресурс попеременно), а могут быть и неделимыми.
При разработке первых систем ресурсами считались процессорное время, память, каналы ввода/вывода и периферийные устройства. Однако очень скоро понятие ресурса стало гораздо более универсальным и общим. Различного рода программные и информационные ресурсы также могут быть определены для системы как объекты, которые могут разделяться и распределяться и доступ к которым необходимо соответствующим образом контролировать. В настоящее время понятие ресурса превратилось в абстрактную структуру с целым рядом атрибутов, характеризующих способы доступа к этой структуре и её физическое представление в системе. Более того, помимо системных ресурсов, о которых мы сейчас говорили, как ресурс стали толковать и такие объекты, как сообщения и синхросигналы, которыми обмениваются задачи.
В первых вычислительных системах любая программа могла выполняться только после полного завершения предыдущей. Центральный процессор осуществлял и выполнение вычислений, и управление операциями ввода/вывода данных. Соответственно, пока осуществлялся обмен данными между оперативной памятью и внешними устройствами, процессор не мог выполнять вычисления. Введение в состав вычислительной машины специальных контроллеров позволило совместить во времени операции вывода полученных данных и последующие вычисления на центральном процессоре. Однако все равно процессор продолжал часто и долго простаивать, дожидаясь завершения очередной операции ввода/вывода. Поэтому было предложено организовать так называемый мультипрограммный (мультизадачный) режим работы вычислительной системы. Суть его заключается в том, что пока одна программа (один вычислительный процесс или задача) ожидает завершения очередной операции ввода/вывода, другая программа (а точнее, другая задача) может быть поставлена на решение.
При мультипрограммировании повышается пропускная способность системы, но отдельный процесс никогда не может быть выполнен быстрее, чем если бы он выполнялся в однопрограммном режиме (всякое разделение ресурсов замедляет работу одного из участников за счёт дополнительных затрат времени на ожидание освобождения ресурса).
Операционная система поддерживает мультипрограммирование и старается эффективно использовать ресурсы путём организации к ним очередей запросов, составляемых тем или иным способом. Это требование достигается поддерживанием в памяти более одного процесса, ожидающего процессор, и более одного процесса, готового использовать другие ресурсы, как только последние станут доступными. Общая схема выделения ресурсов такова. При необходимости использовать какой-либо ресурс (оперативную память, устройство ввода/вывода, массив данных и т. п.) задача обращается к супервизору операционной системы - её центральному управляющему модулю, который может состоять из нескольких модулей, например: супервизор ввода/вывода, супервизор прерываний, супервизор программ, диспетчер задач и т. д. - посредством специальных вызовов (команд, директив) и сообщает о своём требовании. При этом указывается вид ресурса и, если надо, его объём (например, количество адресуемых ячеек оперативной памяти, количество дорожек или секторов на системном диске, устройство печати и объём выводимых данных и т. п.).
Директива обращения к операционной системе передаёт ей управление, переводя процессор в привилегированный режим работы, если такой существует. Не все вычислительные комплексы имеют два (и более) режима работы: привилегированный (режим супервизора), пользовательский, режим эмуляции какого-нибудь другого компьютера и т. д.
Ресурс может быть выделен задаче, обратившейся к супервизору с соответствующим запросом, если:
Получив запрос, операционная система либо удовлетворяет его и возвращает управление задаче, выдавшей данный запрос, либо, если ресурс занят, ставит задачу в очередь к ресурсу, переводя её в состояние ожидания (блокируя). Очередь к ресурсу может быть организована несколькими способами, но чаще всего это осуществляется с помощью списковой структуры.
После окончания работы с ресурсом задача опять с помощью специального вызова супервизора (посредством соответствующей директивы) сообщает операционной системе об отказе от ресурса, или операционная система забирает ресурс сама, если управление возвращается супервизору после выполнения какой-либо системной функции. Супервизор операционной системы, получив управление по этому обращению, освобождает ресурс и проверяет, имеется ли очередь к освободившемуся ресурсу. Если очередь есть - в зависимости от принятой дисциплины обслуживания (правила обслуживания) и приоритетов заявок он выводит из состояния ожидания задачу, ждущую ресурс, и переводит её в состояние готовности к выполнению. После этого управление либо передаётся данной задаче, либо возвращается той, которая только что освободила ресурс.
При выдаче запроса на ресурс задача может указать, хочет ли она владеть ресурсом монопольно или допускает совместное использование с другими задачами. Например, с файлом можно работать монопольно, а можно и совместно с другими задачами.
Если в системе имеется некоторая совокупность ресурсов, то управлять их использованием можно на основе определенной стратегии. Стратегия подразумевает четкую формулировку целей, следуя которым можно добиться эффективного распределения ресурсов.
При организации управления ресурсами всегда требуется принять решение о том, что в данной ситуации выгоднее: быстро обслуживать отдельные наиболее важные запросы, предоставлять всем процессам равные возможности либо обслуживать максимально возможное количество процессов и наиболее полно использовать ресурсы.
Система прерывания появилась в процессорах ЭВМ второго поколения, которые использовались, в основном, в качестве программных устройств управления различными объектами.
Основными причинами появления системы прерывания являются:
1) Желание разработчиков уменьшить простои ЭВМ при возникновении внештатных ситуаций в процессоре (попытки деления на ноль, использование несуществующей команды, сбой в устройстве и т.д.),
2) Желание разработчиков загрузить полезной работой процессор, во время, когда он ожидает сигнал от управляемого объекта, т.е. желание реализовать фоновую работу ЭВМ.
Не смотря на то, что система прерывания появилась для разрешения двух, разных по сущности проблем, в современных ЭВМ используется единый механизм прерывания.
В современных ЭВМ, не смотря на единый механизм прерывания, различают особенности процедуры обработки прерываний при внештатных ситуациях в процессоре и при приходе сигналов прерывания от внешних устройств.
С переходом на многопрограммные режимы работы система прерывания стала обязательным компонентом всех ЭВМ. Система прерывания – это эффективный способ реализации контрольных и управляющих функций операционной системы для поддержки заданных режимов работы ЭВМ, как аппаратно-программного комплекса.
Прерывания представляют собой механизм позволяющий координировать параллельное функционирование отдельных устройств вычислительной системы и реагировать на особые состояния возникающие при работе процессора. Прерывания – это принудительная передача управления от выполняющейся программы к системе, а через неё к соответствующей программе обработки прерываний, происходящая при определенном событии. Основная цель введения прерываний – реализация асинхронного режима работы и распараллеливания работы отдельных устройств вычислительного комплекса. Механизм прерываний реализуется аппаратно-программными средствами.
Прерывания возникающие при работе вычислительной системы можно разделить на внешние и внутренние. Внешние прерывания вызываются асинхронными событиями, которые происходят вне прерываемого процесса. Пример – прерывание от таймера, прерывание от внешних устройств, прерывание по вводу/выводу, прерывание по нарушению питания, прерывание с пульта оператора, прерывание от другого процессора или другой ОС.
Внутренние прерывания вызываются событиями, которые связаны с работой процессора и являются синхронными с его операциями. Например: при нарушении адресации (когда указан запрещенный или несуществующий адрес) либо обращение к отсутствующему сегменту или странице при организации виртуальной памяти; при наличии в поле кода операции незадействованной двоичной комбинации; при делении на 0; при переполнении или исчезновения порядка; при обнаружении ошибок четности, ошибок в работе различных устройств аппаратуры средствами контроля.
Информация о работе Вычислительный процесс и обслуживание прерываний