Автор работы: Пользователь скрыл имя, 22 Октября 2012 в 23:10, курсовая работа
Концепция передачи данных на основе использования инфракрасных (ИК) каналов прорабатывалась в течение многих лет и интерес к ней в настоящее время только расширяется в связи возрастающими потребностями в высокоскоростных беспроводных каналах связи.
Введение. 2
1 Бескабельные каналы связи 7
2 Преимущества технологии беспроводной передачи в инфракрасном диапазоне 10
3 Простое описание технологии (физика процессов) 14
4 Технология (компоненты) 21
5 Зависимость качества передачи от погоды 29
6 Инфракрасные системы связи 36
7 Беспроводная оптическая связь. Мифы и реальность 61
8 Расчет инфракрасного канала 75
9 Обзор рынка ИК систем 99
10 Нормы и требования 105
11 Заключение 107
12 Список использованных источников 109
Большая часть беспроводных сетей, развертываемых в России и за рубежом, использует радиоволны, а решения, основанные на оптических технологиях, пока остаются на вторых ролях. Между тем развитие последних стимулируется как достижениями в проектировании и производстве твердотельных лазеров, так и возрастающими потребностями пользователей в защищенных высокоскоростных каналах связи. Системы, функционирующие в инфракрасном (ИК) диапазоне, имеют целый ряд преимуществ перед альтернативными разработками.
Во-первых, как ранее отмечалось, за счет перехода в оптическую область длин волн такие системы не претендуют на какую-либо часть радиодиапазона, не создают помех в РЧ-спектре и сами не чувствительны к подобным помехам. Для их эксплуатации не нужно получать разрешений на использование дефицитного радиочастотного ресурса. Во-вторых, как прежде отмечалось, инфракрасные каналы связи обеспечивают высокую защищенность пересылаемой информации. Передаваемые по ним потоки не могут быть просканированы анализаторами спектра или контрольным оборудованием радиосетей. К тому же они, как правило, кодируются с помощью патентованных алгоритмов. В-третьих, сами по себе беспроводные оптические системы не накладывают никаких принципиальных ограничений на скорость транспортировки данных. Наконец, немаловажным фактором является малое время их развертывания.
В последние годы инфракрасные системы передачи информации вызывают все больший интерес у операторов, Internet-провайдеров и корпоративных заказчиков. К возможным вариантам их применения относятся формирование физических соединений в корпоративных сетях передачи данных (Ethernet/Fast Ethernet, ATM, FDDI) и магистральных сетях операторов наземной связи (SDH, PDH), создание резервных каналов, построение каналов доступа для решения проблемы «последней мили», обеспечение соединений с базовыми станциями и их контроллерами в сетях мобильной связи, развертывание временных сетей на период модернизации основной кабельной инфраструктуры или в районах стихийных бедствий, передача данных от систем видеонаблюдения и телеметрии при невозможности прокладки кабеля.
Прежде всего отметим, что основной принцип внедрения ИК-систем связи состоит в замене определенного участка физической линии (которую зачастую попросту невозможно проложить) беспроводным каналом. Этот принцип имеет два важных следствия:
Последнее обстоятельство означает, что беспроводные инфракрасные (оптические) каналы могут служить для связи самых разных сетевых инфраструктур.
Общими свойствами всех перечисленных систем являются высокая энерговооруженность лазерного луча (средняя мощность 300 мВт, уровень ИК-излучения 7 Вт/м2) и значительное время наработки на отказ (для лазеров оно составляет 130 тыс. часов, т.е. без малого 15 лет). Мощность, потребляемая каждым из устройств, равна примерно 20 Вт, поэтому даже при сбое в сети электропитания приемопередатчик может работать от бесперебойного источника в течение нескольких часов.
Особенностью ИК-оборудования является быстрота его развертывания: среднее время, затрачиваемое на инсталляцию, не превышает 4 ч. Отсутствие привязки к кабельной инфраструктуре обеспечивает возможность многократного использования одной и той же системы путем ее демонтажа и установки на новом месте. Еще важнее высокая ремонтопригодность данного оборудования. Оно спроектировано так, что замена передатчика, сопровождающаяся переходом на новую длину волны из диапазона 860—920 нм, не требует модернизации приемника (ибо последний работает с длинами волн от 750 до 950 нм).
Инфракрасная связь предусматривает наличие передатчика и приемника. При подключении к компьютеру внешнего устройства требуется специальный приемник инфракрасных лучей (трансивер, адаптер), находящийся в прямой видимости с устройством. Он подключается к Инфракрасному порту компьютера, который должен быть предусмотрен на материнской плате.
Стандарт IrDA имеет несколько базовых уровней: инфракрасный канал физического уровня (IrDA Serial Infrared Physical Layer Link, IrDA SIR), протокол доступа по инфракрасному каналу (IrDA Infrared Link Access Protocol, IrLAP), протокол управления инфракрасным каналом IrDA (Infrared Link Management Protocol, IrLMP), а также необязательные транспортные протоколы IrDA (Transport Protocols IrTP и Tiny TP).
Стек протоколов IrDA имеет три базовых слоя: физический слой IrDA SIR, IrLAP и IrLMP. Данные могут передаваться IrLMP напрямую от приложений через прикладной программный интерфейс API или через дополнительный транспортный протокол стека (IrTP).
На физическом уровне базовый инфракрасный интерфейс использует характеристики универсального асинхронного приемника/передатчика (UART) в COM-порту. Такой порт имеется практически на всех компьютерах. UART имеет несколько темпов передачи данных в диапазоне от 2400 бит/c до 115 Кбит/c.
Оборудование IrDA-SIR состоит из нескольких компонентов для приема и передачи: кодировщика/декодировщика для кодировки инфракрасного сигнала при передаче и декодировки при приеме, инфракрасного преобразователя в составе драйвера вывода и инфракрасного излучателя для передачи, а также приемника/детектора. Кодировщик/декодировщик имеет интерфейс с UART. При передаче приемопередатчики IrDA передают сигнал в поток ввода/вывода последовательного порта. Данные поступают передатчику IrDA через последовательный интерфейс c UART. И вместо того, чтобы посылать сигнал по медной проволоке, как это имеет место при передаче по проводам, он извергает фотоны в воздух в направлении инфракрасного приемника.
Устройства IrDA превращают данные в свет: биты преобразуются в инфракрасный сигнал, при этом вспышка соответствует "0", а отсутствие сигнала - "1". ЦПУ на принимающем конце даже не подозревает о том, что данные передаются в виде света. Оно видит, что и всегда, так как кодирование осуществляется передатчиками IrDA на передающем конце и детектором на принимающем конце инфракрасного канала. Вся инфракрасная передача происходит в инфракрасном диапазоне от 850 нанометров до 880 нанометров.
Соответствующие спецификации продукта имеют минимальную эффективную дальность передачи в 1 метр при наименьшей мощности передатчика. Использование нескольких светодиодов позволяет осуществлять прием в более широком конусе и увеличить расстояние между приемником и передатчиком. Так как спецификации IrDA базируются на схеме передачи от точки к точке, то угол зрения не должен превышать 30 градусов. С одной стороны, направленность инфракрасного пучка делает невозможным случайную передачу данных близрасположенным устройствам. А с другой стороны, поскольку пучок представляет из себя конус, пользователю незачем точно направлять карманное или портативное устройство на цель, чтобы установить соединение.
Повсеместному распространению инфракрасных
излучателей в сетях
Летом 1993 года компания Hewlett-Packard организовала общепромышленное совещание, чтобы обсудить будущее ИК (инфракрасный) передачи данных. Многообразие несовместимых стандартов было печальной реальностью, причинявшей массу неудобств всем от того, что устройства от разных производителей были несовместимы. Телевизоры, видеомагнитофоны, другая бытовая техника с ИК управлением сегодня встречается на "каждом углу", однако в них используются несовместимые физические и программные интерфейсы. Целью совещания было обсуждение путей, которыми промышленность может пойти к общему стандарту, способному совместимость всех устройств, использующих ИК порт. На совещании был сформирован консорциум всех ведущих компаний, названных Ассоциацией инфракрасной передачи данных и вскоре (в июне 1994 года) была объявлена первая одноименная версия стандарта, включающая физический и программный протоколы – IrDA 1.0. Текущая версия – 1.1. В настоящей статье будут описаны основные моменты действующего ныне стандарта.
Итак, протокол IrDA (Infra red Data Assotiation)
позволяет соединяться с
Устройство инфракрасного
Сам порт IrDA основан на архитектуре
коммуникационного СОМ-порта
Связь в IrDA полудуплексная, т.к. передаваемый ИК-луч неизбежно засвечивает соседний PIN-диодный усилитель приемника. Воздушный промежуток между устройствами позволяет принять ИК-энергию только от одного источника в данный момент.
Рассмотрим физические основы IrDA. Передающую часть. Байт, который требуется передать, посылается в блок UART из CPU командой записи ввода-вывода. UART добавляет старт-стоп биты и передает символ последовательно, начиная с младшего значения бита. Стандарт IrDA требует, чтобы все последовательные биты кодировались таким образом: логический "0" передается одиночным ИК-импульсом длиной от 1.6m s до 3/16 периода передачи битовой ячейки, а логическая "1" передается как отсутствие ИК-импульса. Минимальная мощность потребления гарантируется при фиксированной длине импульса 1.6m s.
По окончании кодирования
Приемная часть. Переданные ИК-импульсы поступают на PIN-диод, преобразующий импульсы света в токовые импульсы, которые усиливаются, фильтруются и сравниваются с пороговым уровнем для преобразования в логические уровни. ИК-импульс в активном состоянии генерирует "0", при отсутствии света генерируется логическая "1". Протокол IrDA требует, чтобы приемник точно улавливал ИК-импульсы мощностью от 4m W/sm2 до 500mW/sm2 в угловом диапазоне ± 15°.
Для ИК-излучения cуществует два источника интерференции (помех), основным из которых является солнечный свет, но к счастью в нем преобладает постоянная составляющая. Правильно спроектированные приемники должны компенсировать большие постоянные токи через PIN-диод. Другой источник помех – флуорисцентные лампы – часто применяются для общего освещения. Хорошо спроектированные приемники должны иметь полосовой фильтр для снижения влияния таких источников помех. Вероятность ошибок связи будет зависеть от правильного выбора мощности передатчика и чувствительности приемника. В IrDA выбраны значения, гарантирующие, что описанные выше помехи не будут влиять на качество связи.
Стандарт IrDA включает в себя стек протоколов трех согласованных обязательных уровней: IrPL (Physical Layer), IrLAP (Link Access Protocol) и IrLMP (Link Management Protocol).
Физический уровень (Physical Layer). Спецификация этого протокола устанавливает стандарты для Ir-трансиверов, методов модуляции и схемы кодирования/декодирования, а также ряд физических параметров. Стандарт предусматривает использование длины волны в диапазоне 850–900 nm. Минимальная и максимальная интенсивность передатчика (как уже говорилось) составляет 40–50 m W/Sr соответственно внутри 30° конуса. Для стандарта IrDA (скорость передачи данных 115.2Kbps) схема кодирования аналогична используемой в традиционной UART: бит старта ("0") и стоп-бит ("1") добавляются перед и после каждого байта соответственно. Но вместо схемы NZR (Non-Return to Zero) используется кодировка, подобная RZ (Return to Zero), т.е. двоичный "0" кодируется единичным импульсом, а "1" – его отсутствием. Кадры отделяются друг от друга байтами Escape-последовательности, содержащимися в теле самого кадра. Для определения ошибок (EDt – Error Detection) используется 16bit циклическая контрольная сумма. Например, уже в стандарте IrDA 1.1 для протокола обмена 1.152Mbps (синхронизация выполняется как в протоколе HDLP – High-level Data Link Protocol высокого уровня) и 4Mbps (использование 4-PPM – Pulse-Phase Modulation) старт-бит и стоп-бит не применяются. Так, фреймы, получаемые от более высокоуровневого протокола IrLAP, вкладываются в поле данных фреймов SIR, согласно используемому методу кодирования. Стандарт не содержит обязательных вариантов реализации этой процедуры и допускает варьирование алгоритмов в зависимости от возможностей конкретного оборудования. В зависимости от скорости соединения предлагаются методы кодирования: асинхронный (ASYNC, 9600–115200 bps), синхронный (HDLC, 0.576–1.152 Mbps) и 4-PPM (4Mbps).
Программный протокол. Он включает в себя: IrLAP (Link Access Protocol), занимающийся разбиением данных на блоки, контролем ошибок и другими функциями низкого уровня, и IrLMP (Link Management Protocol), позволяющий по одной ИК-линии обмениваться данными между несколькими приложениями. Данный протокол базируется на существующих стандартах асинхронной полудуплексной передачи данных HDLC и SDLC. Инфракрасная технология поддерживает только однонаправленную передачу информации, поэтому, в следствие полудуплексной природы SIR, возникла архитектура с одним главным (первичным) и множественными подчиненными (вторичными) устройствами. Схема обращения устройств представляет собой обычный протокол обмена данными, где есть фазы запросов (Request) и ответов (Response). Так, первичное устройство отвечает за организацию соединения, обработку ошибок, и посланные им фреймы называются управляющими (Command Frames), а пакеты вторичных устройств именуются ответными (Response Frames). Обмен информацией идет только с первичным устройством, которое всегда выступает инициатором соединения, однако его роль может играть любое из устройств, поддерживающих необходимые для этого функции. По желанию может быть включен протокол транспортного уровня, позволяющий осуществлять контроль передачи между приложениями в случае одновременной работы нескольких приложений на одной физической линии. Для разных уровней имеется три интерфейса. Служебные примитивы уровня LM-SVC позволяют одному из устройств IrDA узнать какие сервис и протоколы зарегистрированы на другом устройстве. Примитивы доступа к уровню M-SVC управляют режимом связи, открытием и закрытием независимых соединений между клиентами, а так же отправкой и приемом данных. Интерфейс L-SVC дает доступ к функциям протокола IrLAP.