Автор работы: Пользователь скрыл имя, 24 Марта 2013 в 08:35, реферат
Создание топливных элементов — одна из больших научно-технических проблем нашего времени; ею занимаются ученые и инженеры всех промышленно развитых стран. Чем эта проблема привлекла столь большое внимание, что даст человечеству ее решение?
1. Введение …………………………………………………………………………….. 3
2. Электрохимические генераторы …………………………………………………… 4
2.1 Кислород-водородные генераторы и топливные элементы ………………….... 7
2.2. Автономные энергоустановки на топливных элементах ……………………. 10
3. Топливные элементы в России …………………………………………………… 15
4. Перспективность электрохимии …………………………………………………. 22
Список использованной литературы ………………
Это вызвано в первую очередь низкой эффективностью протекания реакции электровосстановления кислорода при сравнительно низких температурах (80–90°С) функционирования данных устройств. Серьёзным препятствием на пути широкого распространения топливных элементов является также высокая цена получаемой с их помощью электроэнергии — от 3 до 8 тыс. долларов за 1 кВт. Тем не менее топливные элементы с ТПЭ вследствие своих уникальных качеств (безопасности, экологической чистоты и компактности) нашли применение на подводных и космических кораблях, где их используют для получения пресной воды и электрической энергии.
2.2. Автономные энергоустановки на топливных элементах.
Рис. 4. Рис. 5.
Специалисты в области энергетики отмечают, что в большинстве развитых стран быстро растет интерес к рассредоточенным источникам энергии сравнительно малой мощности. Главные преимущества этих автономных энергоустановок -умеренные капитальные затраты при строительстве, быстрый ввод в эксплуатацию, сравнительно простое обслуживание и хорошие экологические характеристики. При автономной системе электроснабжения не требуется вложений в линии электропередач и подстанции. Расположение автономных источников энергии непосредственно в местах потребления не только избавляет от потерь в сетях, но и повышает надежность электроснабжения.
Хорошо известны такие автономные источники энергии, как малые ГТУ (газотурбинные установки), двигатели внутреннего сгорания, ветроустановки и солнечные батареи на полупроводниках. До последнего времени менее популярными были топливные элементы (ТЭ), представляющие собой электрохимические генераторы, способные преобразовать химическую энергию в электрическую, минуя процессы горения, превращения тепловой энергии в механическую, а последней - в электроэнергию. Электрическая энергия образуется в топливных элементах благодаря химической реакции между восстановителем и окислителем, которые непрерывно поступают к электродам. Восстановителем чаще всего служит водород, окислителем - кислород или воздух. Совокупность батареи топливных элементов и устройств для подачи реагентов, отвода продуктов реакции и тепла (которое может утилизироваться) представляет собой электрохимический генератор.
В последнее десятилетие XX века, когда вопросы надежности электроснабжения и экологические проблемы приобрели особенно важное значение, многие фирмы в Европе, Японии и в США приступили к разработке и производству нескольких вариантов топливных элементов.
Наиболее простыми являются щелочные топливные элементы, с которых началось освоение этого вида автономных источников энергии. Рабочая температура в этих ТЭ составляет 80-95°С, электролитом является 30%-ный раствор едкого калия. Работают щелочные ТЭ на чистом водороде.
В последнее время большое распространение получил топливный элемент РЕМ с мембранами протонного обмена (с полимерным электролитом). Рабочая температура в этом процессе - также 80-95°С, но в качестве электролита используется твердая ионообменная мембрана с перфторсулфокислотой.
По общему признанию, наиболее привлекательным в коммерческом плане является топливный элемент с фосфорной кислотой PAFC, у которого КПД по выработке только электроэнергии достигает 40%, а при использовании выделенного тепла -85%. Рабочая температура у этого ТЭ 175—200°С, электролит - жидкая фосфорная кислота, пропитывающая карбид кремния, связанный тефлоном. Схема и принцип такого топливного элемента мощностью 200 кВт показаны на рис. 4.
Пакет элемента снабжен двумя графитовыми пористыми электродами и орто-фосфорной кислотой в качестве электролита. Электроды покрыты платиновым катализатором. В реформере природный газ при взаимодействии с паром переходит в водород и СО, который доокисляется до СО2 в конверторе. Далее молекулы водорода под влиянием катализатора диссоциируют на аноде на ионы Н. Электроны, освобожденные в этой реакции, направляются через нагрузку к катоду. На катоде они реагируют с ионами водорода, диффундирующими через электролит, и с ионами кислорода, которые образуются в результате каталитической реакции окисления кислорода воздуха на катоде, образуя в конечном итоге воду.
К перспективным видам топливных элементов относится также ТЭ с расплавленным карбонатом типа MCFC. Этот ТЭ при работе на метане имеет КПД по электроэнергии 50-57%. Рабочая температура 540—650°С, электролит - расплавленный карбонат калиевой и натриевой щелочей в оболочке - матрице из литий-алюминиевого оксида LiA102.
И, наконец, наиболее перспективный топливный элемент - SOFC. Это твердооксидный топливный элемент, использующий любое газообразное топливо и наиболее пригодный для сравнительно крупных установок. Его КПД по электроэнергии составляет 50-55%, а при использовании в установках комбинированного цикла -до 65%. Рабочая температура 980—1000°С, электролит - твердый цирконий, стабилизированный иттрием.
На рис. 5 показана батарея SOFC из 24-х элементов, разработанная специалистами из корпорации Siemens Westinghouse Power Corporation (SWP - Германия). Эта батарея является основой электрохимического генератора, работающего на природном газе. Первые демонстрационные испытания энергоустановки такого типа мощностью 400 Вт были проведены еще в 1986 г. В последующие годы совершенствовалась конструкция твердооксидных топливных элементов и увеличивалась их мощность.
Наиболее успешными были демонстрационные испытания установки мощностью 100 кВт, сданной в эксплуатацию в 1999 г. Энергоустановка подтвердила возможность получения электроэнергии с высоким КПД (46%), а также показала высокую стабильность характеристик. Тем самым была доказана возможность эксплуатации энергоустановки не менее 40 тыс. часов при допустимом падении ее мощности.
В 2001 г. была разработана новая энергоустановка на твердооксидных элементах, работающая при атмосферном давлении. Батарея (электрохимический генератор) мощностью энергоустановки 250 кВт с комбинированной выработкой электроэнергии и тепла включала в себя 2304 твердооксидных трубчатых элемента. Кроме того, в состав установки входили инвертор, регенератор, подогреватель топлива (природного газа), камера сгорания для подогрева воздуха, теплообменник для подогрева воды за счет тепла уходящих газов и другое вспомогательное оборудование. При этом габаритные размеры установки были вполне умеренными: 2,6x3,0x10,8 м.
Определенных успехов в разработке крупных топливных элементов добились японские специалисты. Исследовательские работы были начаты в Японии еще в 1972 г., но значительные успехи были достигнуты только в середине 90-х годов. Опытные модули топливных элементов имели мощность от 50 до 1000 кВт, причем 2/3 из них работали на природном газе.
В 1994 г. в Японии была сооружена установка с топливными элементами мощностью 1 МВт. При общем КПД (с выработкой пара и горячей воды), равном 71%, установка имела КПД по отпуску электроэнергии не менее 36%.
С 1995 г., по сообщениям прессы, в Токио эксплуатируется энергоустановка на топливных элементах с фосфорной кислотой мощностью 11 МВт, а общая мощность выпущенных топливных элементов к 2000 г. достигла 40 МВт.
Все перечисленные выше установки относятся к классу промышленных. Их разработчики постоянно стремятся к повышению мощности агрегатов, чтобы улучшить стоимостные характеристики (удельные затраты на кВт установленной мощности и стоимость выработанной электроэнергии). Но есть несколько компаний, которые ставят другую задачу: разработать простейшие установки для бытового потребления, в том числе - индивидуальные источники электропитания.
И в этой области имеются существенные достижения:
- компания Plug Power LLC разработала установку на топливных элементах мощностью 7 кВт для энергоснабжения дома;
- корпорация Н Power выпускает используемые на транспорте зарядные агрегаты для аккумуляторов мощностью 50-100 Вт;
- компания Intern. Fuel Cells LLC выпускает установки для транспорта и персональные источники питания мощностью 50-300 Вт;
- корпорация Analytic Power разработала по заказу армии США персональные источники питания мощностью по 150 Вт, а также установки на топливных элементах для домашнего энергоснабжения мощностью от 3 до 10 кВт.
В чем же заключаются достоинства топливных элементов, побуждающие многочисленные компании вкладывать огромные средства в их разработку?
Помимо высокой надежности электрохимические генераторы имеют высокий КПД, что выгодно отличает их от паротурбинных установок и даже от установок с ГТУ простого цикла. Важным достоинством топливных элементов является удобство их использования в качестве рассредоточенных источников энергии: модульная конструкция позволяет соединить последовательно любое количество отдельных элементов с образованием батареи - идеальное качество для наращивания мощности.
Но самым важным аргументом в пользу топливных элементов являются их экологические характеристики. Выбросы NOX и СО на этих установках настолько малы, что, например, окружные Управления по качеству воздуха в регионах (где нормы экологического контроля являются наиболее жесткими в США) даже не упоминают это оборудование во всех требованиях, касающихся защиты атмосферы. В таблице 2 для сравнения приведены допустимые в Европейском Союзе концентрации основных загрязнителей атмосферы в продуктах сгорания, покидающих энергетические установки разного типа.
Многочисленные преимущества топливных элементов, к сожалению, не могут в настоящее время перевесить их единственный недостаток - высокую стоимость, В США, например, удельные капитальные затраты на сооружение энергоустановки даже с наиболее конкурентоспособными топливными элементами составляют примерно 3500 долл./кВт. И хотя правительство предоставляет субсидию в размере 1ООО долл./кВт, чтобы стимулировать спрос на эту технологию, стоимость сооружения таких объектов остается достаточно высокой. Особенно при сопоставлении с капитальными затратами на строительство мини-ТЭЦ с ГТУ или с двигателями внутреннего сгорания мегаваттно-го диапазона мощности, которые составляют примерно 500 долл./кВт.
В последние годы наметился определенный прогресс в деле снижения затрат на установки с ТЭ. Сооружение энергоустановок с ТЭ на базе фосфорной кислоты мощностью 0,2-1,0 МВт, о которых упоминалось выше, обошлось в 1700 долл./кВт. Стоимость производства энергии на таких установках в Германии при использовании их в течение 6000 ч в год по расчетам составляет 7,5-10 центов/кВт-ч. Установка РС25 мощностью 200 кВт, которую эксплуатирует энергокомпания Hessische EAG (Дарм-штадт), также имеет неплохие экономические показатели: стоимость электроэнергии, включая амортизационные отчисления, затраты на топливо и на обслуживание установки в сумме составили 15 центов/кВт-ч. Этот же показатель для ТЭС на буром угле составлял в энергокомпании 5,6 цента/кВт-ч, на каменном угле - 4,7 цента/кВт-ч, для парогазовых установок - 4,7 цента/кВт-ч и для дизельных электростанций - 10,3 цента/кВт-ч.
При сооружении более крупной установки на топливных элементах (N=1564 кВт), работающей с 1997 г. в Кельне, потребовались удельные капитальные затраты в количестве 1500-1750 долл./кВт, но стоимость собственно топливных элементов составила только 400 долл./кВт.
Японские специалисты считают, что при условии широкого проникновения на рынок стоимость эксплуатации энергоустановок с топливными элементами, включая замену элементов раз в пять лет, может быть снижена в перспективе до 2 центов/кВт-ч.
Все вышеизложенное показывает, что топливные элементы - это перспективный вид энергопроизводящего оборудования как для промышленности, так и для автономных установок коммунально-бытового сектора. Высокий КПД использования газа и превосходные экологические характеристики дают основания полагать, что после решения важнейшей задачи - снижения стоимости -этот вид энергетического оборудования будет востребован на рынке автономных систем тепло- и электроснабжения.
3. Топливные элементы в России.
С 1900 по 2000 г. потребление энергии в мире увеличилось почти в 15 раз - с 21 до 320 экоДж (1 экоДж = 27 х 106 м3 нефти). В качестве первичных источников используются нефтепродукты (34.9%), уголь (23.5%), природный газ (21.1%), ядерное топливо (6.8%) и возобновляемые источники - ветер, солнце, гидро- и биотопливо (13.7%). Это привело к тому, что за 50 лет выбросы углекислого газа в атмосферу возросли в 4.5 раза и сегодня составляют 20 х 1012 м3/год. Это тот самый углекислый газ, ради которого существует Киотский протокол и который, как уверяют многие ученые, вызывает парниковый эффект. Вообще энергетика, основанная на ископаемом топливе, создает очень много экологических проблем. Возникает дилемма: без энергии нельзя сохранить нашу цивилизацию, однако существующие методы производства энергии и высокие темпы роста ее потребления приводят к разрушению окружающей среды. Естественно, что одна из основных задач современной энергетики - поиски путей преодоления экологических проблем.
Вторая и, наверное, главная проблема состоит в том, что существующие источники энергии ограничены. Считается, что нефти и газа хватит не более чем на 100 лет, угля - примерно на 400 лет, ядерного топлива - на 1000 лет с лишним. Для того чтобы иметь топливо, когда на Земле будут исчерпаны запасы нефти и газа, и решить экологические проблемы, необходимо переходить к новым источникам энергии и иметь "чистую энергетику". И наша главная надежда - на водородную энергетику: использование водорода как основного энергоносителя и топливных элементов как генераторов электроэнергии. Одновременно резко сократится потребление ископаемых топлив, потому что водород можно получать из воды, разлагая ее на водород и кислород. Энергию для этого будут давать ядерная энергетика и возобновляемые источники.