Автор работы: Пользователь скрыл имя, 24 Февраля 2014 в 14:56, отчет по практике
Целями и задачами практики стажера направления SDH, были:
1) Оперативное реагирование и устранение аварий в коммутационной части;
2) реконфигурационные работы на оборудовании;
3) разделение потоков.
Введение
1 Цифровая первичная сеть--принципы построения, тенденции развития.
2 Технология SDH
3 Состав сети SDH. Топология и архитектура
4 Построение SDH
4.1 Процессы загрузки/выгрузки цифрового потока;
4.2 Процедуры мультиплексирования внутри иерархии SDH;
4.3 Структура заголовка POH;
4.4 Структура заголовка SOH;
4.5 Назначение указателей;
5 Методы контроля четности и определения ошибок в системе SDH
6 Резервирование
7 Приложение
7.1 Рекомендации ITU-T и ETSI по стандартам первичной сети
7.2 Список сокращений
Заключение
Литература
Рисунок 3.8-Топология "последовательная линейная цепь" типа "упрощённое кольцо" с защитой 1+1.
Топология "звезда", реализующая функцию концентратора.
В этой топологии один из удалённых узлов сети, связанный с центром коммутации или узлом сети SDH на центральном кольце, играет роль концентратора, или хаба, где часть трафика может быть выведена на терминалы пользователя, тогда как оставшаяся его часть может быть распределена по другим удалённым узлам (рис.3.9.)
Рисунок 3.9-Топология "звезда" c мультиплексором в качестве концентратора.
Топология "кольцо".
Эта топология (рис.3.10.) широко используется для построения SDH сетей первых двух уровней SDH иерархии (155 и 622 Мбит/с). Основное приемущество этой топологии - лёгкость организации защиты типа 1+1, благодаря наличию в синхронных мультиплексорах SMUX двух пар оптических каналов приёма/передачи: восток - запад, дающих возможность формирования двойного кольца со встречными потоками.
Рисунок 3.10-Топология "кольцо" c защитой 1+1.
Архитектура сети SDH.
Архитектурные решения припроектировании сети SDH могут быть сформированы на базе использования рассмотренных выше элементарных топологий сети в качестве её отдельных сегментов.
Радиально-кольцевая
Пример радиально-кольцевой
Рисунок 3.11-Радильно-кольцевая сеть SDH.
Архитектура типа "кольцо-кольцо".
Другое часто используемое в архитектуре сетей SDH решение - соединение типа "кольцо-кольцо". Кольца в этом соединении могут быть либо одинакового, либо разного уровней иерархии SDH. На рис.3.12 показана схема соединения двух колец одного уровня - STM-4, а на рис.3.13 каскадная схема соединения трёх колец - STM-1, STM-4, STM-16.
Рисунок 3.12-Два кольца одного уровня.
Рисунок 3.13-Каскадное соединение трёх колец.
Линейная архитектура для
Для линейных сетей большой протяженности растояние между терминальными мультиплексорами больше или много больше того растояния, которое может быть рекомендованно с точки зрения максимально допустимого затухания волоконно-оптического кабеля. В этом случае на маршруте между ТМ (рис.3.14) должны быть установленны кроме мультиплексоров и проходного коммутатора ещё и регенераторы для востановления затухающего оптического сигнала. Эту линеёную архитектуру можно представить в виде последовательного соединения ряда секций, специфицированных в рекомендациях ITU-T G.957 и ITU-T G.958.
Рисунок 3.14-Сеть SDH большой протяженности со связью типа "точка-точка" и её сегментация.
В процессе развития сети SDH разработчики могут использовать ряд решений, характерных, для глобальных сетей, таких как формирование своего "остова" (backbone) или магистральной сети в виде ячеистой (mush) структуры, позволяющей организовать альтернативные (резервные) маршруты, используемые в случае возникновения проблем при маршрутизации виртуальных контейнеров по основному пути. Это наряду с присущими сетям SDH внутренним резирвированием, позволяет повысить надёжность всей сети в целом. Причём при таком резервировании на альтернативных маршрутах могут быть использовнны альтернативные среды распространения сигнала. Например, если на основном маршруте используется ВОК, то на резервном - РРЛ, или наоборот.
4 Построение SDH
Процессы загрузки/выгрузки цифрового потока.
Рассмотрим процессы, связанные
с загрузкой и выгрузкой
В качестве примера рассмотрим процесс формирования синхронного транспортного модуля STM-1 из нагрузки потока Е1 (рис.4.2).
Рисунок 4.2-Формирование
синхронного транспортного модуля STM-1
из нагрузки потока Е1.
Как видно из рисунка, в процессе формирования синхронного транспортного модуля к нагрузке сначала добавляются выравнивающие биты, а также фиксированные, управляющие и упаковывающие биты. Ниже более подробно остановимся на процессе выравнивания скорости нагрузки при формировании контейнера С-n (процессе стаффинга в системе SDH). К сформированному контейнеру С-12 добавляется заголовок маршрута VC-12 РОН (Path Overhead), в результате формируется виртуальный контейнер.
Добавление к виртуальному контейнеру 1 байта указателя (PTR) превращает первый в блок нагрузки (TU). Затем происходит процедура мультиплексирования блоков нагрузки в группы блоков нагрузки (TUG) различного уровня вплоть до формирования виртуального контейнера верхнего уровня VC-4. В результате присоединения заголовка маршрута VC-4 РОН образуется административный блок (AU), к которому подсоединяется секционный заголовок SОН (Section Overhead). Учитывая разделение маршрута на два типа секций (рис. 3.14), SОН состоит из заголовка регенераторной секции (RSOH) и заголовка мультиплексорной секции (MSOH). К структуре заголовка еще вернемся при рассмотрении форматов заголовков, где будут рассмотрены значения байтов SОН.
Как видно, процесс загрузки цифрового потока связан с использованием процессов выравнивания (битового стаффинга), активностью указателей, а также с использованием заголовков РОН и SOH. В этом разделе мы рассмотрим процессы выравнивания скорости загружаемого цифрового потока и их влияние на параметры цифровой нагрузки.
Известно, размер контейнера в системе передачи SDH стандартизирован. Его размер несколько больше размера, необходимого для загрузки потока PDH соответствующего уровня иерархии с учетом максимально допустимой вариации скорости загружаемого потока. При загрузке цифрового потока производится процедура выравнивания его скорости методом битового стаффинга, для этого используется часть контейнера.
Различают два вида битового стаффинга:
В процессе загрузки и выгрузки цифрового потока в синхронный транспортный модуль обычно используются оба вида выравнивания.
В качестве примера рассмотрим загрузку потока 140 Мбит/с в транспортный модуль STM-1 (рис. 4.3).
Рисунок 4.3- Загрузка потока
140 Мбит/с в
синхронный транспортный модуль
Как видно из рисунка, в процессе загрузки потока 140 Мбит/с в синхронный транспортный модуль используются процедуры фиксированного выравнивания (биты R) и плавающего выравнивания (биты S, индикаторы С). Процедура фиксированного стаффинга используется чаще и связана с полями X, Y и Z. Процедура плавающего выравнивания связана с использованием полей Х и Z, причем непосредственно стаффинговые биты плавающего выравнивания передаются в поле Z. Поле Х содержит индикатор стаффинга, передаваемый периодически (до появления поля Z индикатор передается 5 раз).
Процедура выравнивает вариацию скорости. Допустимые значения вариации скорости загружаемых потоков иерархии PDH представлены в табл. 4.1.
Скорость цифрового |
Максимально допустимая |
Скорость цифрового потока |
Название |
1,5444 |
50 |
1,600 |
C-11 |
2,048 |
50 |
2,176 |
C- 12 |
6,312 |
30 |
6,784 |
C- 2 |
34,368 |
20 |
48,384 |
C- 3 |
44,736 |
20 |
48,384 |
C- 3 |
139,260 |
15 |
149,760 |
C- 4 |
Таблица 4.1- Допустимые значения вариации скорости
загружаемого
потока и оазличные типы контейнеоов
В качестве второго примера рассмотрим загрузку потока 34 Мбит/с (ЕЗ), представленную на рис. 4.4.
Как следует из рисунка, загрузка потока ЕЗ в трибутарную группу TUG-3 во многом аналогична загрузке потока Е4, представленной на рис.4.2. И в том, и в другом случае используются виртуальные контейнеры высокого уровня - VC-3 и VC-4 соответственно. В обоих случаях используется процедура стаф-финга, причем как фиксированного (биты R), так и плавающего или переменного (биты S). Для идентификации битов переменного стаффинга используются индикаторы стаффинга (биты С). Существенно, что на рис. 4.3 помимо процедуры стаффинга представлена также структура заголовков, в частности заголовок маршрута высокого уровня VC-3 РОН. Ниже рассмотрены основные информационные поля, входящие в этот заголовок.
В качестве примера виртуального контейнера низкого уровня рассмотрим асинхронную загрузку потока 2 Мбит/с - наиболее часто используемый вариант загрузки цифрового потока (рис.4.5). На рис.4.5 представлена побайтовая структура загруженного в синхронный транспортный модуль потока головка РОН (V5, J2, N2 и К4). Как видно пользуются процедуры фиксированного и плавающего выравнивания.
Процедуры мультиплексирования внутри иерархии SDH.
Наиболее важными потоками иерархии SDH являются потоки STM-1, STM-4 и STM-16. Рассмотрим процедуры мультиплексирования между этими уровнями, схематически представленные на рис.4.6.
Как следует из рисунка, внутри иерархии
SDH мультиплексирование
Для удобства реализации синхронного
мультиплексирования с
Использование в концепции SDH байт-синхронного мультиплексирования позволило также увязать динамику развития пропускной способности в цифровых системах передачи с динамикой развития производительности современных процессоров, что было важно, поскольку на этапе технологии PDH наметилось некоторое отставание.
Рассмотрим теперь структуру заголовка маршрута и секционного заголовка и те информационные поля, которые входят в их состав.
Структура заголовка POH.
Заголовок маршрута РОН выполняет
функции контроля параметров качества
передачи контейнера. Он сопровождает
контейнер по маршруту следования от точки
формирования до точки расформирования.
Структура и размер заголовка РОН определяются
типом соответствующего контейнера. Следовательно,
различаются два основных типа заголовков:
--- заголовок маршрута высокого уровня
(High-order РОН - НО-РОН), используемый для контейнеров
VC-4/VC-3;
--- заголовок маршрута низкого уровня
(Low-order РОН - LO-POH), используемый для контейнеров
VC-3/VC-2/VC-1.
Рассмотрим подробно структуру
заголовка маршрута высокого уровня.
Структура заголовка НО-РОН
J1 |
Индикатор маршрута |
B3 |
Мониторинг качества (код BIP-8) |
C2 |
Указатель типа полезной нагрузки |
G1 |
Подтверждение ошибок передачи |
F2 |
Сигналы обслуживания |
H4 |
Индикатор сверхцикла |
F3 |
Автоматическое переключение |
K3 |
Подтверждение ошибок передачи |
N1 |
Мониторинг взаимного |