Понятие сетевого администрирования. Задачи

Автор работы: Пользователь скрыл имя, 26 Июня 2013 в 14:27, контрольная работа

Описание работы

Современные корпоративные информационные системы по своей природе всегда являются распределенными системами. Рабочие станции пользователей, серверы приложений, серверы баз данных и прочие сетевые узлы распределены по большой территории. В крупной компании офисы и площадки соединены различными видами коммуникаций, использующих различные технологии и сетевые устройства. Главная задача сетевого администратора — обеспечить надежную, бесперебойную, производительную и безопасную работу всей этой сложной системы.

Содержание работы

1.Задачи и цели сетевого администрирования……………………………………………..3
2.Модели межсетевого взаимодействия (модель OSI, модель TCP/IP)…………………..7
2.1. Модель OSI……………………………………………………………………………….8
2.2. Модель TCP/IP…………………………………………………………………………..10
Заключение…………………………………………………………………………………..14
Список литературы………………………………………………………………………….15

Файлы: 1 файл

+ Комп.сети контрольная.docx

— 93.20 Кб (Скачать файл)

Основная идея модели OSI в  том, что одни и те же уровни на разных системах, не имея возможности связываться  непосредственно, должны работать абсолютно  одинаково. Одинаковым должен быть и  сервис между соответствующими уровнями различных систем. Нарушение этого  принципа может привести к тому, что информация, посланная от одной системы к другой, после всех преобразований не будет идентична исходной.

Существует семь основных уровней модели OSI (табл. 1.1). Они начинаются с физического уровня и заканчиваются прикладным. Каждый уровень предоставляет услуги для более высокого уровня. Седьмой уровень обслуживает непосредственно пользователей.

Таблица 1.1.

7. Прикладной (Application)

6. Представления (Presentation)

5. Сеансовый (Session)

4. Транспортный (Transport)

3. Сетевой (Network)

2. Канальный (Data Link)

1. Физический (Physical)


Модель OSI описывает путь информации через сетевую среду от одной прикладной программы на одном компьютере до другой программы на другом компьютере. При этом пересылаемая информация проходит вниз через все уровни системы.

Уровни на разных системах не могут общаться между собой  напрямую. Это умеет только физический уровень.

По мере прохождения информации вниз внутри системы она преобразуется  в вид, удобный для передачи по физическим каналам связи.

Для указания адресата к  этой преобразованной информации добавляется  заголовок с адресом. После получения  адресатом этой информации, она проходит через все уровни наверх. По мере прохождения информация преобразуется  в первоначальный вид.

Каждый уровень системы  должен полагаться на услуги, предоставляемые  ему смежными уровнями.

  1. Физический уровень. На данном уровне выполняется передача битов по физическим каналам (коаксиальный кабель, витая пара, оптоволокно).
  2. Канальный уровень. Данный уровень определяет методы доступа к среде передачи данных и обеспечивает передачу кадра данных между любыми узлами в сетях с типовой топологией по физическому адресу сетевого устройства. Адреса, используемые на канальном уровне в локальных сетях, часто называют МАС-адресами (MAC — media access control, управление доступом к среде передачи данных).
  3. Сетевой уровень. Обеспечивает доставку данных между любыми двумя узлами в сети с произвольной топологией, при этом не гарантируется надежная доставка данных от узла-отправителя к узлу-получателю. На этом уровне выполняются такие функции как маршрутизация логических адресов сетевых узлов, создание и ведение таблиц маршрутизации, фрагментация и сборка данных.
  4. Транспортный уровень. Обеспечивает передачу данных между любыми узлами сети с требуемым уровнем надежности. Для выполнения этой задачи на транспортном уровне имеются механизмы установления соединения между сетевыми узлами, нумерации, буферизации и упорядочивания пакетов, передаваемых между узлами сети.
  5. Сеансовый уровень. Реализует средства управления сессией, диалогом, а также предоставляет средства синхронизации в рамках процедуры обмена сообщениями, контроля над ошибками, обработки транзакций, поддержки вызова удаленных процедур RPC.
  6. Уровень представления. На этом уровне могут выполняться различные виды преобразования данных, такие как компрессия и декомпрессия, шифровка и дешифровка данных.
  7. Прикладной уровень. Набор сетевых сервисов, предоставляемых конечным пользователям и приложениям. Примеры таких сервисов — обмен сообщениями электронной почты, передача файлов между узлами сети, приложения управления сетевыми узлами.

Функционирование первых трех уровней, физического, канального и сетевого, обеспечивается, в основном, активным сетевым оборудованием  и, как правило, реализуются следующими компонентами: сетевыми адаптерами, репитерами, мостами, концентраторами, коммутаторами, маршрутизаторами.

2.2. Модель TCP/IP.

Модель TCP/IP называют также  моделью DARPA (сокращение от Defense Advanced Research Projects Agency, организация, в которой в свое время разрабатывались сетевые проекты, в том числе протокол TCP/IP, и которая стояла у истоков сети Интернет) или моделью Министерства обороны CША (модель DoD, Department of Defense, проект DARPA работал по заказу этого ведомства).

Историческая  справка: Впервые о TCP/IP было сказано в 1973 году на заседании International Network Working Group, прошедшем в Великобритании. Здесь Роберт Кан и Винт Серф выступили с проектом статьи, которая позже, в мае 1974 года, была опубликована в одном из самых престижных журналов Transactions on Communications. В статье были изложены основы будущего протокола TCP/IP.

Главная идея, предложенная авторами, состояла в том, чтобы перенести  обеспечение надежности коммуникаций из сети в подключенные к ней серверы. Идея оказалась блестящей, она пришлась по вкусу и либерально настроенным  ученым, и военным одновременно. После этого протокол начал жить своей жизнью, пока еще под названием TCP. К совершенствованию нового протокола  приложили руку многие инженеры и  ученые, и к октябрю 1977 года его  работу удалось продемонстрировать не только в ARPAnet, но и в пакетной радиосети и спутниковой сети SATNET.

Чуть позже инженеры пришли к выводу о необходимости разделить  протокол на две части: так появились "близнецы-братья" TCP и IP. Часть TCP отвечает за разбиение сообщения  на дейтаграммы на стороне отправителя, за сборку их на стороне получателя, обнаружение ошибок и восстановление порядка пакетов, если он был нарушен  в процессе передачи. IP, или Internet Protocol, отвечает за маршрутизацию отдельных дейтаграмм.

История создания TCP/IP ведет  свое начало с момента, когда министерство обороны США столкнулось с  проблемой объединения большого числа компьютеров с различными ОС. В 1970 г. был разработан необходимый набор стандартов. Протоколы, разработанные на базе этих стандартов, получили обобщенное название TCP/IP.

К 1978 году окончательно оформилось то, что сегодня мы называем TCP/IP. Позже стек адаптировали для использования  в локальных сетях. В начале 1980 г. протокол стал составной частью ОС UNIX. В том же году появилась объединенная сеть Internet. Переход к технологии Internet был завершен в 1983 г., когда министерство обороны США решило, что все компьютеры, присоединенные к глобальной сети, будут использовать стек протоколов TCP/IP.

Модель TCP/IP разрабатывалась  для описания стека протоколов TCP/IP (Transmission Control Protocol/Internet Protocol). Она была разработана значительно раньше, чем модель OSI.

Формальные правила, определяющие последовательность и формат сообщений  на одном уровне, называются протоколами. Иерархически организованная совокупность протоколов называется стеком коммуникационных протоколов.

Модель состоит из четырех  уровней, представленных в табл. 1.2.

Таблица 1.2.

1. Прикладной уровень  (Application)

WWW, FTP, TFTP, SNMP, Telnet, SMTP, DNS, DHCP, WINS

2. Транспортный уровень  (Transport)

TCP, UDP

3. Уровень межсетевого  взаимодействия (Internet)

ARP, IP, ICMP, RIP, OSPF

4. Уровень сетевого интерфейса (Network Interface)

Не регламентируется спецификациями стека TCP/IP (Ethernet, Token Ring, FDDI, ATM, X.25, Frame Relay, SLIP, PPP)


Приближенное соответствие между моделями OSI и TCP/IP представлено в табл. 1.3.

Таблица 1.3.

7. Прикладной (Application)

1. Прикладной уровень  (Application)

6. Представления (Presentation)

5. Сеансовый (Session)

4. Транспортный (Transport)

2. Транспортный уровень  (Transport)

3. Сетевой (Network)

3. Уровень межсетевого  взаимодействия (Internet)

2. Канальный (Data Link)

4. Уровень сетевого интерфейса (Network Interface)

1. Физический (Physical)


 

 

Преимущества  стека протоколов TCP/IP

  • Основное достоинство стека протоколов TCP/IP в том, что он обеспечивает надежную связь между сетевым оборудованием от различных производителей.
  • Независимость от сетевой технологии — стек только определяет элемент передачи, дейтаграмму, и описывает способ ее движения по сети.
  • Всеобщая связанность — стек позволяет любой паре компьютеров, которые его поддерживают, взаимодействовать друг с другом. Каждому компьютеру назначается логический адрес, а каждая передаваемая дейтаграмма содержит логические адреса отправителя и получателя. Промежуточные маршрутизаторы используют адрес получателя для принятия решения о маршрутизации.
  • Подтверждения. Протоколы стека обеспечивают подтверждения правильности прохождения информации при обмене между отправителем и получателем.
  • Стандартные прикладные протоколы. Протоколы стека TCP/IP включают в свой состав средства поддержки основных приложений, таких как электронная почта, передача файлов, удаленный доступ и т.д.

Кратко опишем уровни модели TCP/IP.

  1. Уровень сетевого интерфейса не регламентирован спецификациями стека TCP/IP и фактически к стеку TCP/IP относят уровни с 1-го по 3-й модели TCP/IP. Данный уровень соответствует физическому и канальному уровням модели OSI.
  2. Уровень межсетевого взаимодействия. На данном уровне функционирует целое семейство протоколов. Основная задача данного уровня — доставка пакетов от одного узла-отправителя к узлу-получателю
    • Эту задачу выполняет протокол IP (Internet Protocol, протокол межсетевого взаимодействия). Протокол IP — базовый протокол стека TCP/IP и основной протокол сетевого уровня. Отвечает за передачу информации по сети. В его основе заложен дейтаграммный метод, который не гарантирует доставку пакета.
    • Протокол ARP (Address Resolution Protocol, протокол разрешения физических адресов) — служит связующим звеном между уровнем межсетевого взаимодействия и уровнем сетевого интерфейса. Он преобразует IP-адреса сетевых узлов в физические MAC-адреса соответствующих сетевых адаптеров. Протокол ARP предполагает, что каждое устройство знает как свой IP-адрес, так и свой физический адрес. ARP динамически связывает их и заносит в специальную таблицу, где хранятся пары "IP-адрес – физический адрес" (обычно каждая запись в ARP-таблице имеет время жизни 10 мин.).
    • Протокол ICMP (Internet Control Message Protocol, протокол межсетевых управляющих сообщений) — служит для обмена информацией об ошибках. С помощью специальных пакетов ICMP сообщает сетевым узлам информацию о невозможности доставки пакета, о превышении времени жизни пакета и др.
    • Протоколы RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First) служат для построения таблиц маршрутизации и вычисления маршрутов при отправке пакетов между различными IP-сетями.
  3. Транспортный уровень.
    • Протокол TCP (Transmission Control Protocol, протокол управления передачей) обеспечивает, базируясь на услугах протокола IP, надежную передачу сообщений между сетевыми узлами с помощью образования соединений (сеансов) между данными узлами. Такие протоколы прикладного уровня, как HTTP и FTP, передают протоколу TCP свои данные для транспортировки. Поэтому скоростные характеристики TCP оказывают непосредственное влияние на производительность приложений. Кроме того, протокол TCP используется для обработки запросов на вход в сеть, разделения ресурсов и т.д. На протокол TCP, в частности, возложена задача управления потоками и перегрузками. Он отвечает за согласование скорости передачи данных с техническими возможностями рабочей станции-получателя и промежуточных устройств в сети.
    • Протокол UDP (User Datagram Protocol, протокол дейтаграмм пользователя) обеспечивает передачу прикладных пакетов дейтаграммным способом (т.е. не гарантирующим доставку пакетов). Работа этого протокола аналогична IP, но основной его задачей является связь сетевого протокола и различных приложений.
  4. Прикладной уровень. Приложения, перечисленные в табл. 1.2, специально разрабатывались для функционирования в сетях TCP/IP.
    • Протоколы для формирования сетевой инфраструктуры (DNS, DHCP, WINS) будут рассмотрены в следующих разделах данного курса.
    • Приложения WWW (World Wide Web, Всемирная паутина) — основа для работы сегодняшней сети Интернет. Протокол FTP (File Transfer Protocol, протокол передачи файлов) реализует удаленную передачу файлов между узлами сети.
    • Протокол TFTP (Trivial File Transfer Protocol, простейший протокол пересылки файлов) — более простой передачи файлов, в отличие от FTP не требующий аутентификации пользователя на удаленном узле и использующий протокол UDP для передачи информации.
    • Протокол SNMP (Simple Network Management Protocol, простой протокол управления сетью) используется для организации управления сетевыми узлами.

 

Заключение.

Корпоративная сеть — сложная  система, состоящая из программных, аппаратных и коммуникационных средств, обеспечивающих эффективное распределение  вычислительных ресурсов. Основу работы сети составляют сетевые службы (или  сервисы).

Базовый набор сетевых  служб корпоративной сети:

  • службы сетевой инфраструктуры DNS, DHCP, WINS;
  • службы файлов и печати;
  • службы каталогов;
  • службы обмена сообщениями;
  • службы доступа к базам данных.

Сетевое администрирование  — это планирование, установка, настройка, обслуживание корпоративной сети, обеспечение  ее надежной, бесперебойной, высокопроизводительной и безопасной работы

Задачи сетевого администрирования:

  1. Планирование сети.
  2. Установка и настройка сетевых узлов.
  3. Установка и настройка сетевых протоколов.
  4. Установка и настройка сетевых служб.
  5. Поиск неисправностей.
  6. Поиск узких мест сети и повышения эффективности работы сети.
  7. Мониторинг сетевых узлов.
  8. Мониторинг сетевого трафика.
  9. Защита информации в сети.

Для формального описания взаимодействия сетевых узлов используются межсетевые взаимодействия. В настоящее  время стандартными моделями являются две сетевые модели: семиуровневая  модель OSI, разработанная организацией ISO (Международная Организация по Стандартам), и четырехуровневая модель TCP/IP, разработанная в рамках проекта DARPA.

 

 

 

 

Список литературы.

  1. Таненбаум Э 
    Компьютерные сети (3-е изд.) 
    Пер. с англ. — С.-Пб.:"Питер", 2002 — 848 с
  2. Олифер В. Г., Олифер Н. А 
    Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 3-е издание 
    С.-Пб.: "Питер", 2005 — 960 с
  3. Руссинович М., Соломон Д 
    Внутреннее устройство Microsoft Windows: Windows Server 2003, Windows XP и Windows 2000. Мастер-класс. 4-е издание 
    М.: Издательство "Русская редакция"; СПб.: Питер, 2006. 992 стр.: ил

 

 


Информация о работе Понятие сетевого администрирования. Задачи