Автор работы: Пользователь скрыл имя, 05 Января 2012 в 19:29, реферат
Обыкновенное дифференциальное уравнение 1-го порядка (n=1) имеет вид: или, если его удается разрешить относительно производной: . Общее решение y=y(x,С) или общий интеграл уравнения 1-го порядка содержат одну произвольную постоянную. Единственное начальное условие для уравнения 1-го порядка позволяет определить значение константы из общего решения или из общего интеграла. Таким образом, будет найдено частное решение или, что тоже, будет решена задача Коши. Вопрос о существовании и единственности решения задачи Коши является одним из центральных в общей теории обыкновенных дифференциальных уравнений. Для уравнения 1-го порядка, в частности, справедлива теорема, принимаемая здесь без доказательства.
Лазарева Кристина группа 048б
Дифференциальные уравнения 1-го порядка. Дифференциальные уравнения с разделяющимися переменными. Однородные дифференциальные уравнения. Линейные дифференциальные уравнения
Обыкновенные дифференциальные уравнения 1-го порядка – основные понятия.
Обыкновенное дифференциальное уравнение 1-го порядка (n=1) имеет вид: или, если его удается разрешить относительно производной: . Общее решение y=y(x,С) или общий интеграл уравнения 1-го порядка содержат одну произвольную постоянную. Единственное начальное условие для уравнения 1-го порядка позволяет определить значение константы из общего решения или из общего интеграла. Таким образом, будет найдено частное решение или, что тоже, будет решена задача Коши. Вопрос о существовании и единственности решения задачи Коши является одним из центральных в общей теории обыкновенных дифференциальных уравнений. Для уравнения 1-го порядка, в частности, справедлива теорема, принимаемая здесь без доказательства.
Теорема 2.1. Если в уравнении функция и ее частная производная непрерывны в некоторой области D плоскости XOY , и в этой области задана точка , то существует и притом единственное решение , удовлетворяющее как уравнению , так и начальному условию .
Геометрически общее решение уравнения 1-го порядка представляет собой семейство кривых на плоскости XOY, не имеющих общих точек и отличающихся друг от друга одним параметром – значением константы C. Эти кривые называются интегральными кривыми для данного уравнения. Интегральные кривые уравнения обладают очевидным геометрическим свойством: в каждой точке тангенс угла наклона касательной к кривой равен значению правой части уравнения в этой точке: . Другими словами, уравнение задается в плоскости XOY поле направлений касательных к интегральным кривым. Замечание: Необходимо отметить, что к уравнению приводится уравнение и так называемое уравнение в симметрической форме .
Дифференциальные уравнения 1-го порядка с разделяющимися переменными.
Определение. Дифференциальным уравнением с разделяющимися переменными называется уравнение вида (3.1)
или уравнение вида (3.2)
Для того, чтобы в уравнении (3.1) разделить переменные, т.е. привести это уравнение к так называемому уравнению с разделенными переменными, произвести следующие действия:
;
Теперь надо решить уравнение g(y)= 0. Если оно имеет вещественное решение y=a, то y=a тоже будет решением уравнения (3.1).
Уравнение (3.2) приводится к уравнению с разделенными переменными делением на произведение :
, что позволяет получить общий интеграл уравнения (3.2): . (3.3)
Интегральные кривые (3.3) будут дополнены решениями , если такие решения существуют.
Пример.
Решить уравнение: .
Решение.
Разделяем переменные:
.
Интегрируя, получаем
Далее из уравнений и находим x=1, y=-1. Эти решения – частные решения.
Уравнением
с разделяющимися переменными называется
уравнение первого порядка вида
где X(x) и Y(y) — непрерывные функции. Общий интеграл
уравнения задается выражением Решение y = y(x) задачи Коши y(x0) = y0 как неявную функцию переменной x задает выражение
|
Краткая памятка:
. Однородные дифференциальные уравнения 1-го порядка.
Определение 1. Уравнение 1-го порядка называется однородным, если для его правой части при любых справедливо соотношение , называемое условием однородности функции двух переменных нулевого измерения.
Пример 1. Показать, что функция - однородная нулевого измерения.
Решение.
,
что и требовалось доказать.
Теорема. Любая функция - однородна и, наоборот, любая однородная функция нулевого измерения приводится к виду .
Доказательство.
Первое утверждение теоремы очевидно, т.к. . Докажем второе утверждение. Положим , тогда для однородной функции , что и требовалось доказать.
Определение 2. Уравнение (4.1)
в котором M и N – однородные функции одной и той же степени, т.е. обладают свойством при всех , называется однородным.
Очевидно, что это уравнение всегда может быть приведено к виду (4.2) , хотя для его решения можно этого и не делать.
Однородное уравнение приводится к уравнению с разделяющимися переменными с помощью замены искомой функции y по формуле y=zx, где z(x) – новая искомая функция. Выполнив эту подстановку в уравнении (4.2), получим: или или .
Интегрируя, получаем общий интеграл уравнения относительно функции z(x) , который после повторной замены дает общий интеграл исходного уравнения. Кроме того, если - корни уравнения , то функции - решения однородного заданного уравнения. Если же , то уравнение (4.2) принимает вид
и становится уравнением
с разделяющимися переменными.
Его решениями являются
Замечание. Иногда целесообразно вместо указанной выше подстановки использовать подстановку x=zy.
§ 5. Дифференциальные уравнения, приводящиеся к однородным.
Рассмотрим уравнение вида . (5.1)
Если , то это уравнение с помощью подстановки , где и - новые переменные, а и - некоторые постоянные числа, определяемые из системы
Приводится к однородному уравнению
Если , то уравнение (5.1) принимает вид
Полагая z=ax+by, приходим к уравнению, не содержащему независимой переменной.
Рассмотрим примеры.
Пример 1.
Проинтегрировать уравнение
и выделить интегральную кривую, проходящую через точки: а) (2;2); б) (1;-1).
Решение.
Положим y=zx. Тогда dy=xdz+zdx и
.
Сократим на и соберем члены при dx и dz:
.
Разделим переменные: .
Интегрируя, получим ;
или , .
Заменив здесь z на , получим общий интеграл заданного уравнения в виде (5.2) или .
Это семейство окружностей , центры которых лежат на прямой y = x и которые в начале координат касаются прямой y + x = 0. Эта прямая y = -x в свою очередь частное решение уравнения.
Теперь режим задачи Коши:
А) полагая в общем интеграле x=2, y=2, находим С=2, поэтому искомым решением будет .
Б) ни одна из окружностей (5.2) не проходит через точку (1;-1). Зато полупрямая y = -x, проходит через точку и дает искомое решение.
Пример 2. Решить уравнение: .
Решение.
Уравнение является частным случаем уравнения (5.1).
Определитель в данном примере , поэтому надо решить следующую систему
Решая, получим, что . Выполняя в заданном уравнении подстановку , получаем однородное уравнение . Интегрируя его при помощи подстановки , находим .
Возвращаясь к старым переменным x и y по формулам , имеем .
§ 6. Обобщенное однородное уравнение.
Уравнение M(x,y)dx+N(x,y)dy=0 называется обобщенным однородным, если удается подобрать такое число k, что левая часть этого уравнения становится однородной функцией некоторой степени m относительно x, y, dx и dy при условии, что x считается величиной первого измерения, y – k-го измерения, dx и dy – соответственно нулевого и (k-1)-го измерений. Например, таким будет уравнение . (6.1)
Действительно при сделанном предположении относительно измерений
x, y, dx и dy члены левой части и dy будут иметь соответственно измерения -2, 2k и k-1. Приравнивая их, получаем условие, которому должно удовлетворять искомое число k: -2 = 2k = k-1. Это условие выполняется при k = -1 (при таком k все члены левой части рассматриваемого уравнения будут иметь измерение -2). Следовательно, уравнение (6.1) является обобщенным однородным.
Обобщенное однородное уравнение приводится к уравнению с разделяющимися переменными с помощью подстановки , где z – новая неизвестная функция. Проинтегрируем указанным методом уравнение (6.1). Так как k = -1, то , после чего получаем уравнение .
Интегрируя его, находим , откуда . Это общее решение уравнения (6.1).
§ 7. Линейные дифференциальные уравнения 1-го порядка.
Линейным уравнением 1-го порядка называется уравнение, линейное относительно искомой функции и ее производной. Оно имеет вид:
где P(x) и Q(x) – заданные непрерывные функции от x. Если функция , то уравнение (7.1) имеет вид: (7.2)
и называется линейным однородным уравнением, в противном случае оно называется линейным неоднородным уравнением.
Линейное однородное дифференциальное уравнение (7.2) является уравнением с разделяющимися переменными:
Выражение (7.3) есть общее решение уравнения (7.2). Чтобы найти общее решение уравнения (7.1), в котором функция P(x) обозначает ту же функцию, что и в уравнении (7.2), применим прием, называемый методом вариации произвольной постоянной и состоящий в следующем: постараемся подобрать функцию С=С(x) так, чтобы общее решение линейного однородного уравнения (7.2) являлось бы решением неоднородного линейного уравнения (7.1). Тогда для производной функции (7.3) получим:
.
Подставляя
найденную производную в
или .
Откуда , где - произвольная постоянная. В результате общее решение неоднородного линейного уравнения (7.1) будет (7.4)
Первое слагаемое
в этой формуле представляет общее
решение (7.3) линейного однородного
дифференциального уравнения (7.2), а
второе слагаемое формулы (7.4) есть частное
решение линейного
Теорема. Если известно одно частное решение линейного неоднородного дифференциального уравнения , то все остальные решения имеют вид , где - общее решение соответствующего линейного однородного дифференциального уравнения.
Однако надо
отметить, что для решения линейного
неоднородного