Финансовые ренты

Автор работы: Пользователь скрыл имя, 09 Сентября 2014 в 18:23, контрольная работа

Описание работы

Аннуите́т (фр. annuité от лат. annuus — годовой, ежегодный) или финансовая рента — общий термин, описывающий график погашения финансового инструмента (выплаты вознаграждения или уплаты части основного долга и процентов по нему), когда выплаты устанавливаются периодически равными суммами через равные промежутки времени. Аннуитетный график отличается от такого графика погашения, при котором выплата всей причитающейся суммы происходит в конце срока действия инструмента, или графика, при котором на периодической основе выплачиваются только проценты, а вся сумма основного долга подлежит к оплате в конце.

Содержание работы

ВВЕДЕНИЕ 3
Финансовые ренты. Коэффициент наращения финансовой ренты 4
ЗАКЛЮЧЕНИЕ 18
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 19

Файлы: 1 файл

линейр.алгебра.docx

— 173.61 Кб (Скачать файл)

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

«Уральский Государственный Экономический Университет»

Центр дистанционного образования

 

 

 

 

 

 

 

 

 

 

 

КОНТРОЛЬНАЯ  РАБОТА

 

 

 

по дисциплине: « Линейная алгебра »

 

 

на тему: «Финансовые ренты (аннуитеты)»

 

 

 

 

 

Выполнил:

студент группы ГМФ-13 Кб

Ооржак Долаана Дозур-ооловна

Проверил:

Магеря О.П.

 

 

 

 

 

 

 

 

Екатеринбург 2013г.

 

 

СОДЕРЖАНИЕ

 

ВВЕДЕНИЕ                                                                                       3

Финансовые ренты. Коэффициент наращения финансовой ренты                                                                 4

ЗАКЛЮЧЕНИЕ                                                                               18

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ                       19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ВВЕДЕНИЕ

Аннуите́т (фр. annuité от лат. annuus — годовой, ежегодный) или финансовая рента — общий термин, описывающий график погашения финансового инструмента (выплаты вознаграждения или уплаты части основного долга и процентов по нему), когда выплаты устанавливаются периодически равными суммами через равные промежутки времени. Аннуитетный график отличается от такого графика погашения, при котором выплата всей причитающейся суммы происходит в конце срока действия инструмента, или графика, при котором на периодической основе выплачиваются только проценты, а вся сумма основного долга подлежит к оплате в конце.

Сумма аннуитетного платежа включает в себя основной долг и вознаграждение.

В широком смысле, аннуитетом может называться как сам финансовый инструмент, так и сумма периодического платежа, вид графика погашения финансового инструмента или другие производные понятия, оттенки значения. Аннуитетом, например, является:

  • Один из видов срочного государственного займа, по которому ежегодно выплачиваются проценты, и погашается часть суммы.
  • Равные друг другу денежные платежи, выплачиваемые через определённые промежутки времени в счёт погашения полученного кредита, займа и процентов по нему.
  • В страховании жизни - договор со страховой компанией, по которому физическое лицо приобретает право на регулярное получение согласованных сумм, начиная с определённого времени, например, выхода на пенсию[1].
  • Современная стоимость серии регулярных страховых выплат, производимых с определенной периодичностью в течение срока, установленного договором страхования.

Аннуитетный график также может использоваться для того, чтобы накопить определённую сумму к заданному моменту времени, внося равновеликие вклады на счёт или депозит, по которому начисляется вознаграждение. Частным случаем ренты является финансовая рента или аннуитет - такой поток платежей, все члены которого равны друг другу, так же как и интервалы времени между ними.

 

 

Финансовые ренты. Коэффициенты наращения финансовой ренты

 

Часто аннуитетом называют финансовый актив, приносящий фиксированный доход ежегодно в течение ряда лет [7, с.28].

В буквальном переводе "аннуитет" подразумевает, что платежи происходят с интервалом в один год, однако встречаются потоки с иной периодичностью выплат.

Очевидно, что рента - это более широкое понятие, чем аннуитет, так как существует множество денежных потоков, члены которых не равны друг другу или распределены неравномерно [7, с.28].

Форму аннуитетов имеют многие финансовые потоки, например выплата доходов по облигациям или платежи по кредиту, страховые взносы. Можно сказать, что финансы тяготеют к упорядочению денежных потоков.

Принцип временной ценности денег делает невозможным прямое суммирование членов ренты. Для учета влияния фактора времени к каждому члену ренты применяются рассмотренные выше правила наращения и дисконтирования только сложных процентов, то есть предполагается, что получатель потока имеет возможность реинвестировать получаемые им суммы.

Финансовая рента имеет следующие параметры:

 

- член ренты - величина каждого отдельного платежа;

 

- период ренты - временной интервал между двумя соседними платежами, срок ренты - время, измеренное от начала финансовой ренты до конца ее последнего периода;

 

- процентная ставка - ставка, используемая при наращении или дисконтировании платежей, образующих ренту, число платежей в году, число начислений процентов в году, моменты платежа внутри периода ренты [3, с.62].

 

Классификация рент может быть произведена по различным признаками.

 

В зависимости от продолжительности периода, ренты делят на годовые и p-срочные, где p - число выплат в году.

 

По числу начислений процентов различают ренты с начислением один в году, m раз или непрерывно. Моменты начисления процентов могут не совпадать с моментами рентных платежей [5, с.47].

 

По величине членов различают постоянные (с равными членами) и переменные ренты.

 

Если размеры платежей изменяются по какому - либо математическому закону, то часто появляется возможность вывести стандартные формулы, значительно упрощающие расчеты.

 

По вероятности выплаты членов различают ренты верные и условные.

 

Верные ренты подлежат безусловной выплате, например, при погашении кредита. Выплата условной ренты ставится в зависимость от наступления некоторого случайного события. Поэтому число ее членов заранее неизвестно. Например, число выплат пенсий зависит от продолжительности жизни пенсионера.

 

По числу членов различают ренты с конечным числом членов или ограниченные и бесконечные или вечные. В качестве вечной ренты можно рассматривать выплаты по облигационным займам с неограниченными или не фиксированными сроками.

 

В зависимости от наличия сдвига момента начала ренты по отношению к началу действия контракта или какому-либо другому моменту ренты подразделяются на немедленные и отложенные или отсроченные. Срок немедленных рент начинается сразу, а у отложенных запаздывает.

 

Ренты различают по моменту выплаты платежей.

 

Если платежи осуществляются в конце каждого периода, то такие ренты называются обычными или постнумерандо. Если же выплаты производятся в начале каждого периода, то ренты называются пренумерандо. Иногда предусматриваются платежи в середине каждого периода.

 

Анализ потоков платежей в большинстве случаев предполагает расчет наращенной суммы или современной величины ренты. Рассмотрим расчет современной стоимости и наращенной суммы постоянной обычной (постнумерандо) p - срочной ренты [4, с.84].

Ежегодно сумма R вносится равными долями p раз в году на банковский счет в течение n лет. Тогда имеем поток из np платежей величиной  каждый в моменты .

Примем за единицу измерения времени 1 год.

Пусть i - годовая эффективная процентная ставка начисления сложных процентов на поступающие платежи.

Согласно определению современной стоимости потока платежей, получаем

 (1)

Вычисляя сумму np членов геометрической прогрессии, знаменатель которой , получим:

 (2)

современная стоимость постоянной обычной p - срочной ренты при начислении процентов на члены ренты 1 раз в году в течение n лет.

Отсюда современная стоимость годовой обычной ренты (p = 1) при начислении процентов на члены ренты 1 раз в году:

. (3)

Используя соотношения эквивалентности для эффективной процентной ставки

 и ,

 

получим современную стоимость обычной p - срочной ренты при начислении на члены ренты сложных процентов m раз в году по номинальной процентной ставке i (m) и непрерывном начислении процентов при постоянной интенсивности процентов δ в год:

 (4)

. (5)

Формулы для наращенной суммы ренты можно получить непосредственно по определению согласно формуле (3).

Например, для постоянной обычной p - срочной ренты при начислении процентов на члены ренты 1 раз в году в течение n лет получаем:

. (6)

Наращенную сумму ренты можно рассчитать, используя формулу связи современной стоимости и наращенной суммы потока платежей.

Например, для годовой ренты при начислении процентов 1 раз в год:

S = A F (T) = A (1 + i) n =  (7)

Для других видов обычной ренты из (4) и (5), используя множители наращения  и  соответственно, получим:

 

 (8)

 (9)

В частности, при m = p (период начисления процентов равен периоду ренты) из (4) и (8) получаем

 (10)

 (11)

Если единицей измерения времени является 1 год, а R - это выплата за год (единицу времени), то множитель в формулах современной стоимости ренты, равный , называется коэффициентом дисконтирования ренты.

Множитель в формулах наращенной суммы ренты, равный , называется коэффициентом наращения ренты.

Из (1) - (11) можно получить коэффициенты наращения и дисконтирования всех рассмотренных видов обычной ренты.

Согласно (1) и (5), коэффициенты дисконтирования и наращения обычной p - срочной ренты с начислением процентов 1 раз в году в течение n лет равны соответственно:

 (12)

 

 (13)

 и  - это соответственно современная стоимость и наращенная сумма постоянной обычной p - срочной ренты с ежегодной выплатой 1 д. е. равными долями p раз в году в размере  в моменты времени  с начислением на члены ренты процентов 1 раз в году.

Следовательно, и связаны соотношением (14):

= (1 + i) n  (14)

Аналогичный смысл имеют коэффициенты дисконтирования и наращения других рассмотренных видов обычной ренты.

Для этих рент имеем соотношения:

 - годовая рента с начислением  процентов 1 раз в год;

 - p - срочная рента с начислением процентов m раз в год;

 - p - срочная рента с непрерывным начислением процентов.

Коэффициенты дисконтирования и наращения годовой ренты при начислении процентов 1 раз в год:

 и  (15)

Если применяется p - срочная рента с начислением процентов p раз в год (m = p) по годовой номинальной ставке i (p), то за единицу измерения времени можно принять  часть года. Тогда  - выплата за единицу времени (постнумерандо),  - процентная ставка за 1 единицу времени,

срок ренты - np единиц времени.

Коэффициенты дисконтирования и наращения такой ренты равны соответственно

 и .

Из формул (10), (11) имеем

,  (16),

что позволяет для этой ренты использовать те же таблицы коэффициентов. Заметим, что если единицей измерения времени является 1 год, то коэффициенты дисконтирования и наращения этой ренты определяются как  =  и  =  и рассчитываются по формулам, полученным из (10), (11):

,  (17). Тогда

=  и  =  (18)

Рассмотрим ренту пренумерандо.

Связь между коэффициентами дисконтирования и наращения рент пренумерандо и постнумерандо следует из их определения. Срок дисконтирования каждого платежа ренты пренумерандо уменьшается, а срок наращения увеличивается на один период ренты по сравнению с обычной рентой. По - прежнему единицей измерения времени считаем 1 год. Если  и  - коэффициенты дисконтирования и наращения p - срочной ренты пренумерандо (платежи поступают в начале каждого периода длиной ) при начислении на члены ренты процентов 1 раз в год, то справедливы соотношения:

=

 =

 = (1 + i) n .

Отсюда при p = 1 получаем соотношения для годовых рент:

=

 =

 = (1 + i) n .

При непрерывном начислении процентов для p - срочной ренты имеем соотношения:

 =

.

Рассмотрим непрерывную ренту.

Коэффициенты дисконтирования и наращения постоянной непрерывной ренты можно получить из формул для p - срочной ренты при  или по определению для непрерывного равномерно выплачиваемого потока платежей с постоянной годовой интенсивностью f (t) = 1.

Например, для постоянной непрерывной ренты при непрерывном начислении процентов по постоянной силе роста  получаем:

,

где  - коэффициент дисконтирования обычной p - срочной ренты при непрерывном начислении процентов.

Заметим, что так как

,

где  - коэффициент дисконтирования p - срочной ренты пренумерандо при непрерывном начислении процентов, то

.

Действительно, при непрерывно поступающих платежах различие между рентами пренумерандо и постнумерандо исчезает.

Коэффициент дисконтирования постоянной непрерывной ренты при начислении процентов 1 раз в год получим по определению:

 

.

Коэффициенты наращения непрерывных рент можно найти из равенств вида:

Информация о работе Финансовые ренты