Автор работы: Пользователь скрыл имя, 01 Ноября 2015 в 18:06, курсовая работа
Понятие числа - фундаментальное понятие как математики, так и информатики. В дальнейшем при изложении материала под числом мы будем понимать его величину, а не его символьную запись.
Сегодня, в самом конце XX века, для записи чисел человечество использует в основном десятичную систему счисления. А что такое система счисления?
Система счисления - это способ записи (изображения) чисел.
Введение
3
1. Позиционные системы счисления
5
2. Вавилонская система счисления.
8
3. Система счисления Майя
11
4. Индо-арабская система счисления
14
Заключение
17
Список литературы
18
Арабские цифры стали известны европейцам в X
веке. Благодаря тесным связям христианской Барселоны
В индо-арабской системе число записывается с помощью десяти основных цифр, значение которых зависит от их места, или позиции, в записи числа (значение цифры равно произведению цифры на некоторую степень числа 10). Поэтому такая система называется десятичной позиционной системой. Позиционные системы счисления очень удобны для построения арифметических алгоритмов, и именно этим объясняется столь широкое распространение индо-арабской системы счисления в современном мире, хотя в разных странах для обозначения отдельных цифр могут использоваться разные символы.
Рисунок 5. Цифры
Названия чисел в индо-арабской системе строятся по определенным правилам. Наиболее употребительный способ наименования чисел заключается в том, что число прежде всего делят на группы из трех цифр справа налево. Эти группы называются «периодами». Первый период называется периодом «единиц», второй – периодом «тысяч», третий – периодом «миллионов» и т.д., как показано на следующем примере(рис.6):
Рисунок 6. Пример
Каждый период читается так, как если бы он был трехзначным числом. Например, период 962 читается как «девятьсот шестьдесят два». Чтобы прочитать число, состоящее из нескольких периодов, прочитывается группа цифр в каждом периоде, начиная с самого левого и далее по порядку слева направо; после каждой группы следует название периода. Например, приведенное выше число читается как «семьдесят три триллиона восемьсот сорок два миллиарда девятьсот шестьдесят два миллиона пятьсот тридцать две тысячи семьсот девяносто восемь». Обратите внимание на то, что при чтении и записи целых чисел союз «и» обычно не используется. Название разряда единиц опускается. За триллионами следуют квадриллионы, квинтиллионы, секстиллионы, септиллионы, октиллионы, ноналлионы, дециллионы. Каждый период имеет значение, в 1000 раз превышающее значение предыдущего.
В индо-арабской системе принято придерживаться следующей процедуры чтения цифр, стоящих справа от десятичной запятой. Здесь позиции называются (по порядку слева направо): «десятые», «сотые», «тысячные», «десятитысячные» и т.д. Правильная десятичная дробь читается так, как если бы цифры после десятичной запятой образовывали целое число, после чего добавляется название позиции последней справа цифры. Например, 0,752 читается как «семьсот пятьдесят две тысячных». Смешанное десятичное число читается путем объединения правила наименования целых чисел с правилом наименования правильных десятичных дробей. Например, 632,752 читается как «шестьсот тридцать две целых семьсот пятьдесят две тысячных». Обратите внимание на слово «целых», произносимое перед десятичной запятой. В последние годы десятичные числа все чаще читают более просто, например, 3,782 как «три запятая семьсот восемьдесят два».
Заключение
Историки доказали, что и пять тысяч лет тому назад люди могли записывать числа, могли производить над ними арифметические действия. При этом записывали они числа совершенно по другим принципам, нежели мы в настоящее время. В любом случае число изображалось с помощью одного или нескольких символов. В математике и информатике приняты символы, участвующие в записи числа, называть цифрами.
Что же понимается под словом «число»?
Первоначально понятие отвлеченного числа отсутствовало, число было «привязано» к тем предметам, которые пересчитывали. Отвлеченное понятие натурального числа появляется вместе с развитием письменности.
Появление дробных чисел было связано с необходимостью производить измерения (сравнения с другой величиной того же рода, выбираемой в качестве эталона). Но поскольку единица измерения не всегда укладывалась целое число раз в измеряемой величине, то возникла практическая потребность, ввести более «мелкие» числа, чем натуральные. Дальнейшее развитие понятия числа было обусловлено уже развитием математики.
Понятие числа – фундаментальное понятие, как математики, так и информатики. Под числом мы будем понимать его величину, а не его символьную запись.
Сегодня человечество для записи чисел использует в основном десятичную систему счисления. В какой системе счисления лучше записывать числа - это вопрос удобства и традиций.
Список литературы
Информация о работе Эволюция позиционных систем счисления (вавилоняне, майя, индо-арабская система)