Автор работы: Пользователь скрыл имя, 04 Мая 2013 в 19:07, доклад
В настоящее время огромный интерес привлекает теория игр, которая, с одной стороны, наряду с математическими моделями общего равновесия и теорией социального выбора, сыграла ключевую роль в создании современной экономической теории, а с другой, является одним из важнейших инструментов анализа огромного многообразия задач, возникающих не только в экономике, но и политике, социальных науках, военном деле, биологии и др.
СЕКЦИЯ МАТЕМАТИКА И ИНФОРМАТИКА
Булдакова Елена, Кировский филиал МГЭИ (факультет Экономики и управления, 2 курс).
Классификация игр в теории игр
Научный руководитель: Зорина Л.Г., старший преподаватель кафедры информатики и математики (Кировский филиал МГЭИ).
В настоящее время огромный интерес привлекает теория игр, которая, с одной стороны, наряду с математическими моделями общего равновесия и теорией социального выбора, сыграла ключевую роль в создании современной экономической теории, а с другой, является одним из важнейших инструментов анализа огромного многообразия задач, возникающих не только в экономике, но и политике, социальных науках, военном деле, биологии и др.
Суть теории игр ( с экономической точки зрения) в том, чтобы помочь экономистам понимать и предсказывать то, что может происходить в экономических ситуациях, и сейчас вряд ли можно найти область экономики или дисциплины, связанной с экономикой, где основные концепции теории игр не были бы просто необходимыми для понимая современной экономической литературы.
В настоящий момент, если говорить
об экономических приложениях,
речь идёт уже не только
о применении теоретико-
1. Даёт ясный
и точный язык исследования
различных экономических
2. Даёт возможность
подвергать интуитивные
3. Помогает
проследить путь от «
Классификация игр
Игра называется коалиционной, если игроки могут объединяться в группы, беря на себя некоторые обязательства перед другими игроками и координируя свои действия. Этим она отличается от некооперативных игр, в которых каждый обязан играть за себя. Развлекательные игры редко являются кооперативными, однако такие механизмы нередки в повседневной жизни.
Часто предполагают, что кооперативные игры отличаются именно возможностью общения игроков друг с другом. В общем случае это неверно. Существуют игры, где коммуникация разрешена, но игроки преследуют личные цели, и наоборот.
Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом.
Большинство изучаемых игр дискретны: в них конечное число игроков, ходов, событий, исходов и т. п. Однако эти составляющие могут быть расширены на множество вещественных чисел. Игры, включающие такие элементы, часто называются дифференциальными. Они связаны с какой-то вещественной шкалой (обычно - шкалой времени), хотя происходящие в них события могут быть дискретными по природе. Дифференциальные игры также рассматриваются в теории оптимизации, находят своё применение в технике и технологиях, физике.
Важное подмножество последовательных
игр составляют игры с полной информацией.
В такой игре участники знают
все ходы, сделанные до текущего
момента, равно как и возможные
стратегии противников, что позволяет
им в некоторой степени
Игры с нулевой суммой -- особая разновидность игр с постоянной суммой, то есть таких, где игроки не могут увеличить или уменьшить имеющиеся ресурсы, или фонд игры. В этом случае сумма всех выигрышей равна сумме всех проигрышей при любом ходе.
Многие изучаемые математиками игры, иного рода: в играх с ненулевой суммой выигрыш какого-то игрока не обязательно означает проигрыш другого, и наоборот. Исход такой игры может быть меньше или больше нуля. Такие игры могут быть преобразованы к нулевой сумме - это делается введением фиктивного игрока, который «присваивает себе» излишек или восполняет недостаток средств.
Ещё игрой с отличной от нуля суммой является торговля, где каждый участник извлекает выгоду. Сюда также относятся го, шашки и шахматы; в двух последних игрок может превратить свою рядовую фигуру в более сильную, получив преимущество. Во всех этих случаях сумма игры увеличивается. Широко известным примером, где она уменьшается, является война.
Конечная парная игра с ненулевой суммой называется биматричной игрой. Такая игра описывается двумя платежными матрицами, каждая для соответствующего игрока.
Подробнее бесконечную антагонистическую игру рассмотрим на примере:
Игрок 1 выбирает х∈X = (0; 1), игрок 2 выбирает y∈Y = (0; 1). После этого игрок 1 получает сумму M(x, y) = x + y за счёт игрока 2. Поскольку Х и Y - открытые интервалы, то на них V1 и V2 не существуют. Если бы Х и Y были замкнутые интервалы, то, очевидно, было бы следующее : V1 = V2 = 1 при xo = 1, yo = 0.
С другой стороны, ясно, что, выбирая х достаточно близкое к 1, игрок 1 будет уверен, что он получит выигрыш не меньше, чем число, близкое к цене игры V = 1; выбирая y близкое к нулю, игрок 2 не допустит, чтобы выигрыш игрока 1 значительно отличался от цены игры V = 1.
Степень близости к цене игры может характеризоваться числом ε > 0. Поэтому в описываемой игре можно говорить об оптимальности чистых стратегий хo = 1, yo = 0 соответственно игроков 1 и 2 с точностью до произвольного числа ε > 0.
Игра будет симметричной
тогда, когда соответствующие
В параллельных играх игроки ходят одновременно, или, по крайней мере, они не осведомлены о выборе других до тех пор, пока все не сделают свой ход. В последовательных, или динамических, играх участники могут делать ходы в заранее установленном либо случайном порядке, но при всём этом они получают некоторую информацию о предшествующих действиях других. Эта информация может быть даже не совсем полной, например, игрок может узнать, что его противник из десяти своих стратегий точно не выбрал пятую, ничего не узнав о других.
В последние годы значение теории игр существенно возросло во многих областях экономических и социальных наук. В экономике она применима не только для решения общехозяйственных задач, но и для анализа стратегических проблем предприятий, разработок организационных структур и систем стимулирования.
Уже в момент ее зарождения, которым считают публикацию в 1944 г. монографии Дж. Неймана и О. Моргенштерна “Теория игр и экономическое поведение”, многие предсказали революцию в экономических науках благодаря использованию нового подхода. Эти прогнозы нельзя было считать излишне смелыми, так как с самого начала данная теория претендовала на описание рационального поведения при принятии решений во взаимосвязанных ситуациях, что характерно для большинства актуальных проблем в экономических и социальных науках. Такие тематические области, как стратегическое поведение, конкуренция, кооперация, риск и неопределенность, являются ключевыми в теории игр и непосредственно связаны с управленческими задачами.