Автор работы: Пользователь скрыл имя, 04 Июня 2013 в 18:28, контрольная работа
В настоящее время задачи экологии имеют первостепенное значение. Важным этапом решения этих задач является разработка математических моделей экологических систем.
Одной из основных задач экологии па современном этапе является изучение структуры и функционирования природных систем, поиск общих закономерностей. Большое влияние на экологию оказала математика, способствующая становлению математической экологии, особенно такие её разделы, как теория дифференциальных уравнений, теория устойчивости и теория оптимального управления.
Введение
1.Цель(постановка задачи)
2.формализация задачи
3.описание решения на компьютере
4.график с параметрами – результат
5. Литература
Титульный лист оформить
Содержание
Введение
1.Цель(постановка задачи)
2.формализация задачи
3.описание решения на компьютере
4.график с параметрами – результат
5. Литература
Введение
В настоящее время задачи экологии имеют первостепенное значение. Важным этапом решения этих задач является разработка математических моделей экологических систем.
Одной из основных задач экологии па современном этапе является изучение структуры и функционирования природных систем, поиск общих закономерностей. Большое влияние на экологию оказала математика, способствующая становлению математической экологии, особенно такие её разделы, как теория дифференциальных уравнений, теория устойчивости и теория оптимального управления.
Одной из важных проблем математической экологии является проблема устойчивости экосистем, управления этими системами. Управление может осуществляться с целью перевода системы из одного устойчивого состояния в другое, с целью её использования или восстановления.
Рассмотрим математическую модель совместного существования двух биологических видов (популяций) типа "хищник - жертва", называемую моделью Вольтерра - Лотки.
Пусть два биологических
вида совместно обитают в
Заданы следующие начальные показатели:
Наименование показателя |
Щуки |
Караси |
— начальная численность популяции |
10000 |
800 |
— коэффициент естественного прироста/смертности |
1,1 |
0,001 |
— коэффициенты межвидового взаимодействия |
0,0001 |
0,0001 |
Со временем число карасей и щук меняется, но так как рыбы в пруду много, то не будем различать 1020 карасей или 1021 и поэтому будем считать и непрерывными функциями времени t. Будем называть пару чисел ( , ) состоянием модели.
Очевидно, что характер изменения состояния ( , ) определяется значениями параметров. Изменяя параметры и решая систему уравнений модели, можно исследовать закономерности изменения состояния экологической системы во времени.
В экосистеме скорость изменения численности каждого вида также будем считать пропорциональной его численности, но только с коэффициентом, который зависит от численности особей другого вида. Так, для карасей этот коэффициент уменьшается с увеличением числа щук, а для щук увеличивается с увеличением числа карасей. Будем считать эту зависимость также линейной. Тогда получим систему из двух дифференциальных уравнений:
Эта система уравнений и называется моделью Вольтерра-Лотки. Числовые коэффициенты , , - называются параметрами модели. Очевидно, что характер изменения состояния ( , ) определяется значениями параметров. Изменяя эти параметры и решая систему уравнений модели, можно исследовать закономерности изменения состояния экологической системы.
Проинтегрируем оба уравнения систему по t, которое будет изменяться от - начального момента времени, до , где T – период, за который происходят изменения в экосистеме. Пусть в нашем случае период равен 1 году. Тогда система принимает следующий вид:
;
;
Принимая = и = приведем подобные слагаемые, получим систему, состоящую из двух уравнений:
Подставив в полученную систему исходные данные получим популяцию щук и карасей в озере спустя год: