Математическое моделирование

Автор работы: Пользователь скрыл имя, 14 Апреля 2013 в 06:41, реферат

Описание работы

С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.
Математическая модель — это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования — исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование — это еще и метод познания окружающего мира, дающий возможность управлять им.

Файлы: 1 файл

Документ Microsoft Office Word.docx

— 45.17 Кб (Скачать файл)

Пусть, например, опыт состоит  в подбрасывании игральной кости  и наблюдении числа выпавших очков X. Тогда можно ввести следующие  случайные события A={X = i}, i = 1, ..., 6. Они образуют полную группу несовместных равновероятных событий, поэтому P(Ai) = (i = 1, ..., 6).

Суммой событий A и B называется событие A + B, состоящее в том, что  в опыте происходит хотя бы одно из них. Произведением событий A и B называется событие AB, состоящее в одновременном  появлении этих событий. Для независимых  событий A и B верны формулы

P(AB) = P(A)•P(B), P(A + B) = P(A) + P(B).

8) Рассмотрим теперь следующую задачу. Предположим, что в электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов 1-го, 2-го и 3-го элементов соответственно равны P= 0,1, P= 0,15, P= 0,2. Будем считать цепь надежной, если вероятность того, что в цепи не будет тока, не более 0,4. Требуется определить, является ли данная цепь надежной.

Так как элементы включены последовательно, то тока в цепи не будет (событие A), если откажет хотя бы один из элементов. Пусть A— событие, заключающееся в том, что i-й элемент работает (i = 1, 2, 3). Тогда P(A1) = 0,9, P(A2) = 0,85, P(A3) = 0,8. Очевидно, что A1A2A— событие, заключающееся в том, что одновременно работают все три элемента, и

P(A1A2A3) = P(A1)•P(A2)•P(A3) = 0,612.

Тогда P(A) + P(A1A2A3) = 1, поэтому P(A) = 0,388 < 0,4. Следовательно, цепь является надежной.

В заключение отметим, что  приведенные примеры математических моделей (среди которых есть функциональные и структурные, детерминистические и вероятностные) носят иллюстративный характер и, очевидно, не исчерпывают  всего разнообразия математических моделей, возникающих в естественных и гуманитарных науках.

.


Информация о работе Математическое моделирование