Автор работы: Пользователь скрыл имя, 09 Октября 2013 в 20:39, реферат
С точки зрения вычислительной математики, идея метода конечных элементов заключается в том, что минимизация функционала вариационной задачи осуществляется на совокупности функций, каждая из которых определена на своей подобласти, для численного анализа системы позволяет рассматривать его как одну из конкретных ветвей диакоптики — общего метода исследования систем путём их расчленения.
Идея метода
Иллюстрация метода на одномерном примере
Преимущества и недостатки
История развития метода
Литература
Ссылки
Реферат МКЭ Нияз Н.Д.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И КУЛЬТУРЫ РЕСПУБЛИКИ КАЗАХСТАН
МЕЖДУНАРОДНАЯ ОБРАЗОВАТЕЛЬНАЯ КОРПОРАЦИЯ
КАЗАХСКАЯ ГОЛОВНАЯ АРХИТЕКТУРНО СТРОИТЕЛЬНАЯ АКАДЕМИЯ
РЕФЕРАТ
По дисциплине: «Современные комьютерные технологии»
На тему: «Метод конечных элементов»
Выполнил: ст. гр. стр-11-8
Нияз Н.Д.
Проверила: Ходжагали И.Н.
г. Алматы 2013
Содержание
Идея метода
Иллюстрация метода на одномерном примере
Преимущества и недостатки
История развития метода
Литература
Ссылки
Идея метода
Суть метода следует из его названия. Область, в которой ищется решение дифференциальных уравнений, разбивается на конечное количество подобластей (элементов). В каждом из элементов произвольно выбирает
С точки зрения вычислительной математики, идея метода конечных элементов заключается в том, что минимизация функционала вариационной задачи осуществляется на совокупности функций, каждая из которых определена на своей подобласти, для численного анализа системы позволяет рассматривать его как одну из конкретных ветвей диакоптики — общего метода исследования систем путём их расчленения.
Иллюстрация метода на одномерном примере
Пусть в одномерном пространстве Р1 необходимо решить следующее одномерное дифференциальное уравнение для нахождения функции на промежутке от 0 до 1. На границах области значение функции равно 0:
где известная функция, неизвестная функция от . вторая производная от по . Решение поставленной задачи методом конечных элементов разобьём на 2 этапа:
После этого возникает проблема нахождения системы линейных алгебраических уравнений, решение которой аппроксимирует искомую функцию.
Если есть решение, то для любой гладкой функции , которая удовлетворяет граничным условиям в точках и , можно записать следующее выражение:
(1)
С помощью интегрирования по частям преобразуем выражение (1) к следующей форме:
(2)
Оно получено с учётом того, что .
Разобьём область, в которой ищется решение
такое, что
на конечные промежутки, и получим новое пространство :
(3) такое, что
где кусочная область пространства . Есть много способов для выбора базиса . Выбирем в качестве базисных функций такие , чтобы они представлялись прямыми линиями (полиномами первой степени):
для (в данном примере )
Если теперь искомое приближённое решение представить виде , а функцию аппроксимировать как , то с помощью (3) можно получить следующую систему уравнений относительно искомых :
,
где .
Преимущества и недостатки
Метод конечных элементов сложнее метода конечных разностей в реализации. У МКЭ, однако, есть ряд преимуществ, проявляющихся на реальных задачах: произвольная форма обрабатываемой области; сетку можно сделать более редкой в тех местах, где особая точность не нужна.
Долгое время широкому распространению МКЭ мешало отсутствие алгоритмов автоматического разбиения области на «почти равносторонние» треугольники (погрешность, в зависимости от вариации метода, обратно пропорциональна синусу или самого острого, или самого тупого угла в разбиении). Впрочем, эту задачу удалось успешно решить (алгоритмы основаны на триангуляции Делоне), что дало возможность создавать полностью автоматические конечно элементные САПР.
История развития метода
Возникновение метода конечных элементов связано с решением задач космических исследований в 1950-х годах. Идея МКЭ была разработана в СССР ещё в 1936 году, но из-за неразвитости вычислительной техники метод не получил развития, поэтому впервые был применён на ЭВМ лишь в 1944 году Аргирисом. Этот метод возник из строительной механики и теории упругости, а уже затем было получено его математическое обоснование. Существенный толчок в своём развитии МКЭ получил в 1963 году после того, как было доказано то, что его можно рассматривать как один из вариантов распространённого в строительной механике метода Рэлея — Ритца, который путём минимизации потенциальной энергии сводит задачу к системе линейных уравнений равновесия. После того, как была установлена связь МКЭ с процедурой минимизации, он стал применяться к задачам, описываемым уравнениями Лапласа или Пуассона. Область применения МКЭ значительно расширилась, когда было установлено (в 1968 году), что уравнения, определяющие элементы в задачах, могут быть легко получены с помощью вариантов метода взвешенных невязок, таких как метод Галёркина или метод наименьших квадратов. Это сыграло важную роль в теоретическом обосновании МКЭ, так как позволило применять его при решении многих типов дифференциальных уравнений. Таким образом, метод конечных элементов превратился в общий метод численного решения дифференциальных уравнений или систем дифференциальных уравнений.
С развитием вычислительных средств возможности метода постоянно расширяются, также расширяется и класс решаемых задач. Практически все современные расчёты на прочность проводят, используя МКЭ.
Литература
Ссылки