Автор работы: Пользователь скрыл имя, 24 Сентября 2012 в 10:17, реферат
Название "математика" происходит от греческого слова "матейн" (mathein) - учиться, познавать. Древние греки вообще считали, что понятия "математика" (mathematike) и "наука", "познание" (mathema) - синонимы.
1. Введение…………………………………………………………… 3
2. История математизации науки ………………………………....... 4
3. Основные методы математизации……………………………….12
4. Пределы и проблемы математизации……………………………23
5. Заключение……………………………………………………….. .29
6. Список литературы………………………………………………. .31
МИНОБРНАУКИ РОССИИ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «СтавропольскИЙ государственнЫЙ УНИВЕРСИТЕТ»
ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ
Кафедра ВЫСШЕЙ АЛГЕБРЫ И ГЕОМЕТРИИ
РЕФЕРАТ НА ТЕМУ
ОБЩИЕ НАПРАВЛЕНИЯ РАЗВИТИЯ МАТЕМАТИКИ
Выполнила: Баймурзаева Гульфира Сапаралиевна студентка 1 курса магистратуры по направлению «Параллельные компьютерные технологии»
Проверила: Лавриненко Ирина Николаевна доцент кафедры высшей алгебры и геометрии кандидат физико-математических наук
|
Ставрополь, 2011г
Содержание
1. Введение
Математику уже затем учить надо, что она
ум в порядок приводит. (М.В. Ломоносов)
Название "математика" происходит от греческого слова "матейн" (mathein) - учиться, познавать. Древние греки вообще считали, что понятия "математика" (mathematike) и "наука", "познание" (mathema) - синонимы. Им было свойственно такое понимание универсализма этой отрасли знания, которое два тысячелетия спустя выразил Рене Декарт, писавший: "К области математики относят науки, в которых рассматриваются либо порядок, либо мера, и совершенно не существенно, будут ли это числа, фигуры, звезды, звуки или что-нибудь другое...; таким образом, должна существовать некая общая наука, объясняющая все, относящееся к порядку и мере, не входя в исследование никаких частных предметов..."
Другое объяснение происхождения слова "математика" связано с греческим словом "матема" (mathema), что означает урожай, сбор урожая. Разметка земельных участков (геометрия), определение сроков полевых работ (на основе астрономических наблюдений и вычислений), подготовка необходимого количества посевных материалов и подсчет собранного урожая требовали серьезных математических знаний.
Роль математики в современной науке постоянно возрастает. Это связано с тем, что, во-первых, без математического описания целого ряда явлений действительности трудно надеяться на их более глубокое понимание и освоение, а, во-вторых, развитие физики, лингвистики, технических и некоторых других наук предполагает широкое использование математического аппарата. Более того, без разработки и использования последнего было бы, например, невозможно ни освоение космоса, ни создание электронно-вычислительных машин, нашедших применение в самых различных областях человеческой деятельности.
2. История математизации науки
Математика – царица наук.
К.Ф. Гаусс
Математика
является одной из древнейших наук.
Само слово “математика” имеет
древнегреческие корни и
Почти с самого зарождения математики, она была неразрывно связана с практической деятельностью человека. Более того, именно из этой повседневной практики и появились первые математические абстракции – натуральные числа и простейшие действия с ними: сложение, вычитание и умножение. Это произошло еще в доисторические времена.
С появлением первых государств (Древнего Египта, Вавилона, Китая) возникает потребности в развитии и углублении математических знаний. Развитие земледелия, архитектуры дает толчок к возникновению геометрии. Математические знания еще являлись только эмпирическими фактами, о необходимости их доказательства речи не возникало. Многие формулы представлялись в виде неких рецептов, следуя которым можно получить результат. Доказательством выступала практика и опыт: если какой-либо факт подтверждался практически, хотя бы приближенно, но достаточно точно для практических нужд, он считался верным. Поэтому некоторые факты, открытые египтянами, оказались правильными лишь приближенно. Например, они считали, что отношение длины окружности к диаметру равно 3,16.
Древнегреческие философы и математики очень много сделали для развития математики. Это и практика строгих доказательств, введенная Фалесом, и замечательные теоремы Пифагора, и методы Архимеда вычисления объемов различных тел, и аксиоматическая система геометрии Евклида, и система буквенных обозначений Диофанта.
Пифагор пытался применить математику для нужд своей философской системы, согласно которой в основе мироздания – числа. Познать мир – это значит познать управляющие им количественные соотношения. Ему приписывается модель солнечной системы, в которой планеты движутся по сферическим орбитам, подчиняющимся некоторым количественным отношениям – так называемая гармония сфер. Также Пифагором и его школой были выявлены интересные числовые закономерности в музыке (высота тона колебания струны зависит от ее длины). Его учение дает первый пример целенаправленного применения математики в объяснении явлений природы, общества и мироздания в целом. Известно выражение, приписываемое Пифагору: “Все есть число”. Местами его учение носит мистический характер, далекий от реального положения вещей. Например, обожествление некоторых чисел: 1 – мать богов, всеобщее первоначало (видимо аналогия с началом натурального ряда), 2 – принцип противоположности в природе (так как противоположности всегда встречаются парами), 3 – природа как триединство первоначала и его противоречивых сторон (3=1+2), и т.д. Интересны (хотя и абсолютно не соответствующие действительности) его рассуждения о связи некоторых арифметических свойств чисел и общественными явлениями. Например, пифагорейцы выделяют так называемые совершенные числа: 6, 28, и т.д. – числа, равные сумме своих собственных (т.е. кроме самого числа) делителей: 6=1+2+3, 28=1+2+4+7+14. Эти числа, по Пифагору, отражают совершенство. Пары чисел, сумма собственных делителей одного из которых равна другому и наоборот, как например, 284 и 220, называются дружественными и отражают явление дружбы в обществе. Пифагорейцы про верную дружбу говорили: “Они дружны, как 220 и 284”. Несмотря на эти наивные представления, такие числа до сих пор представляют интерес для теории чисел – области математики, занимающейся арифметическими свойствами целых чисел. Например, до сих пор неизвестно, бесконечно ли множество совершенных чисел, или существуют ли нечетные совершенные числа?
Последующий период, вплоть до 16 в. характеризуется довольно медленным процессом проникновения математики в другие науки. Решаются задачи, вызванные торговой деятельностью, как в Западной Европе, астрономией и мореплаванием (тригонометрия), как на Арабском Востоке и в Индии.
Бурное развитие как самой математики, так и ее приложений наблюдается в Новое время. Переход к новым капиталистическим отношениям, ослабление влияния церкви на философию и науку развязывают исследователям руки, делают их мысли смелее. Отныне “природа – не храм, а мастерская” и человек – не послушная марионетка в руках бога, а сам хозяин своей судьбы и исследователь окружающего мира.
Одним из первых, кто почувствовал веяние нового времени и начал по-новому подходить к науке, был Г.Галилей. Всем со школьной скамьи известны его опыты по изучению падения тел, которыми он опроверг тысячелетние заблуждения Аристотеля и его последователей. Для описания результатов, Галилей впервые применил математический аппарат: начала дифференциального исчисления. Известно выражение Галилея: “книга природы написана языком математики: буквы в ней – это треугольники, окружности, линии”.
И.Кеплер примерно в то же время, анализируя скурпулезные наблюдения Т.Браге за движением Марса, приходит к выводу, что планеты движутся по эллиптическим орбитам вокруг Солнца. При этом он использует теорию конических сечений, открытых более тысячи лет назад древнегреческим математиком Аполлонием Пергским. Это характерный пример того, как математическая теория, не получившая популярности при жизни автора и почти забытая, находит применение в важных вопросах науки спустя много лет.
Р.Декарт известен в математике благодаря методу координат – своеобразному мостику между алгеброй и геометрией. Эта плодотворная идея по сути стала основным толчком для последующего развития математики. В философии Декарт известен как основатель рационализма – попытки математизировать все научное знание того времени. Он использует методы математики и логики в физике, физиологии, этике, философии. Математика взята за эталон ввиду того, что он считал ее образцом стройности и истинности. Строго доказав то или иное утверждение, математик полностью убеждает остальных в его истинности и освобождает тем самым свою науку от споров и сомнений. Если имеется некая математическая задача, то ее решение полностью закрывает вопрос. Философия же, например, или мораль имеют много таких вопросов, которые на протяжении всей истории вызывали бурные споры и к окончательному мнению относительно них философы так и не пришли. А почему бы не попробовать их решить, используя математические методы, которые в своей области успешно срабатывают? Ведь в справедливости доказанных геометрических теорем никто не сомневается, а правильное решение какой-либо задачи не вызывает споров. Свои размышления Декарт изложил в работе “Рассуждение о методе, чтобы верно направлять свой разум и отыскивать истину в науках”.
Примерно в то же время два других французских математика, Б. Паскаль и П. Ферма, закладывают основы теории вероятности – важной области для математических приложений.
Настоящей революцией в математике и ее приложениях стало открытие дифференциального и интегрального исчисления И.Ньютоном и Г.Лейбницем. Это стало началом широкого проникновения математических методов в физику, механику и астрономию. Основная идея этого метода – идея предела переменной величины – берет свое начало еще в трудах Архимеда, Демокрита и других древнегреческих ученых. Но всю его мощь оценили лишь после введения удобной системы обозначений и метода координат – чего у древних греков не было. Почему же этот метод стал таким плодотворным именно для физических приложений? Дело в том, что характерной особенностью почти всех физических процессов является наличие непрерывного движения, изменения во времени некоторых числовых параметров, а пределы (а с ними и интегралы и производные) как раз и есть важнейший инструмент для исследования непрерывных функций.
Другой заслугой Ньютона, по сути сделавшей физику самостоятельной наукой, стала идея аксиоматизации механики, предложенная в труде “Математические начала натуральной философии”. Там Ньютон, вдохновленный “Началами геометрии” Евклида, выдвигает несколько фундаментальных законов механического движения, известных сейчас как три закона Ньютона. Опираясь на эти “аксиомы”, он, используя математические методы и дедукцию, описывает качественно и количественно многочисленные физические явления.
Лейбницу мы также обязаны удобной системой обозначений для основных предельных операций. Развивая символьные обозначения дальше, Лейбниц мечтает о неком универсальном исчислении, используя которое можно находить истину, механически применяя некоторые правила. “Тогда философы перестанут спорить, а начнут вычислять”. Его мечта в некотором смысле осуществится в начале XX века, когда математики формализуют логику, создав исчисление предикатов.
XVIII век характеризуется
окончательной математизацией
XIX век ознаменовался
не только социальными