Автор работы: Пользователь скрыл имя, 01 Декабря 2015 в 17:53, реферат
Становление и развитие математики как науки, возникновение ее новых разделов тесно связано с развитием потребностей общества в измерениях, контроле, особенно в областях аграрной, промышленной и налогообложения. Первые области применения математики были связаны с созерцанием звезд и земледелием. Изучение звездного неба позволило проложить торговые морские пути, караванные дороги в новые районы и резко увеличить эффект торговли между государствами. Обмен товарами приводил к обмену культурными ценностями, к развитию толерантности как явления, лежащего в основе мирного сосуществования различных рас и народов. Понятие числа всегда сопровождалось и нечисловыми понятиями.
Введение
Основные этапы становления математики
А) математика постоянных величин
В) математика переменных величин
С) математика Декарта
D) теория относительности Эйнштейна
Вывод
Список литературы
РЕФЕРАТ НА ТЕМУ:
СТАНОВЛЕНИЕ МАТЕМАТИКИ КАК НАУКИ
Выполнила:
Студентка 1 курса, направления: «Управление
персоналом»
Томилова Анна
Содержание:
А) математика постоянных величин
В) математика переменных величин
С) математика Декарта
D) теория относительности Эйнштейна
Введение
История развития математики – это не только история развития математических идей, понятий и направлений, но это и история взаимосвязи математики с человеческой деятельностью, социально-экономическими условиями различных эпох.
Становление и развитие математики как науки, возникновение ее новых разделов тесно связано с развитием потребностей общества в измерениях, контроле, особенно в областях аграрной, промышленной и налогообложения. Первые области применения математики были связаны с созерцанием звезд и земледелием. Изучение звездного неба позволило проложить торговые морские пути, караванные дороги в новые районы и резко увеличить эффект торговли между государствами. Обмен товарами приводил к обмену культурными ценностями, к развитию толерантности как явления, лежащего в основе мирного сосуществования различных рас и народов. Понятие числа всегда сопровождалось и нечисловыми понятиями. Например, один, два, много… Эти нечисловые понятия всегда ограждали сферу математики. Математика придавала законченный вид всем наукам, где она применялась. В Европе сложилось разделение на гуманитарные и естественные науки по степени влияния математики на эти части.
Основные этапы становления
математики
Математика постоянных величин
Наши первоначальные представления о числе и форме относятся к очень отдаленной эпохе древнего каменного века. Числовые термины медленно входили в употребление рыболовов, охотников, а затем землевладельцев и торговцев. Все содержание известной нам египетской математики убедительно свидетельствует, что математические знания египтян предназначались для удовлетворения конкретных потребностей материального производства.
Египтяне пользовались двумя системами письма. Одна – иероглифическая – встречается на памятниках и могильных плитах, каждый символ изображает какой-нибудь предмет. В другой системе – иератической – использовались условные знаки, которые произошли из иероглифов в результате упрощений и стилизаций. Именно эта система чаще встречается на папирусах.
Иероглифическая система счисления имеет основание 10 и не является позиционной: для обозначения чисел 1, 10, 100 и т.д. в ней используется разные символы, каждый символ повторяется определенное число раз, и, чтобы прочитать число, нужно просуммировать значения всех символов, входящих в его запись. Таким образом, их порядок не играет роли, и они записываются либо горизонтально, либо вертикально.
Иератическая система счисления также десятичная, но специальные дополнительные символы помогают избежать повторения, принятого в иероглифической системе.
Милетская школа, заложившая основы математики как доказательной науки – одна из первых древнегреческих математических школ. Она существовала в Ионии в конце V-IV вв. до н.э; основными деятелями ее являлись Фалес (ок.624-547 гг. до н.э.), Анаксимандр (ок. 610-546 гг. до н.э.) и Анаксимен (ок.585-525 гг.до н.э.).
Основоположником пифагорийской школы был Пифагор Самосский (580-500 до н.э.).
Элейская школа - это одна из древнейших школ, в трудах которой математика и философия достаточно тесно и разносторонне взаимодействуют. Основными представителями элейской школы считают Парменида (конец VI - V в. до н.э.) и Зенона (первая половина V в. до н.э.).
Значительно сложнее было построить систему фундаментальных положений математики, в которой бы выявленные Зеноном противоречия не имели бы места. Эту задачу решил греческий математик Демокрит, разработав концепцию математического атомизма. Руководствуясь положениями математического атомизма, Демокрит проводит ряд конкретных математических исследований и достигает выдающихся результатов (например, теория математической перспективы и проекции). Выдающим достижением Демокрита в математике явилась также его идея о построении теоретической математики как системы. В зародышевой форме она представляет собой идею аксиоматического построения математики, которая затем была развита в методологическом плане Платоном и получила логически развернутое положение у Аристотеля.
Посредством математических отношений Платон пытался охарактеризовать некоторые явления общественной жизни. Платон существенно опирался на математику при разработке основных разделов своей философии: в концепции "познание - припоминание", учении о сущности материального бытия, об устройстве космоса, в трактовке социальных явлений и т.д. Математика сыграла значительную роль в конструктивном оформлении его философской системы.
Величайший философ древности Аристотель (384-322 гг. до н.э.) в математике, по – видимому не проводил конкретных исследований, однако важнейшие стороны математического познания были подвергнуты им глубокому философскому анализу, послужившему методологической основой деятельности многих поколений математиков. Ко времени Аристотеля теоретическая математика достигла высокого уровня развития. Продолжая традицию философского анализа математического познания, Аристотель поставил вопрос о необходимости упорядочивания самого знания о способах усвоения науки, о целенаправленной разработке искусства ведения познавательной деятельности, включающего два основных раздела: «образованность» и «научное знание дела».
У Аристотеля отчетливо сформулированы логические принципы дедуктивного построения математической дисциплины. Чтобы что-то доказывать, делать логические выводы, нужно опираться на какие-то предшествующие положения, уже доказанные ранее. Поэтому для построения строгой математической теории необходимо перечислить некоторые предположения, на которые можно опираться при доказательстве.
Эти принципы особенно четкое воплощение получили в обширном творении Евклида (III в. до н.э.) «Начала», текст которого дошел и до нашего времени. На две тысячи лет «Начала» Евклида стали энциклопедией, место которого определяется не столько собственными его научными исследованиями, сколько педагогическими заслугами. Величайшая заслуга Евклида состоит в том, что он подвёл итог построению геометрии и придал изложению совершенную форму.
На Востоке возникла система, основанная на десятичной системе счисления со специальными знаками для каждой десятичной единицы более высокого разряда – системе, которая нам знакома, благодаря римскому исчислению, основанному на том же принципе. Именно на востоке определено значение π.
Следующим был период Александрии. Одно из крупнейших произведений этого периода стало «Великое собрание» Птолемея. Там мы находим теорему о четырехугольниках, вписанном в окружность. В «Сферике» Менелая мы находим теорему о треугольнике в обобщенном для сферы виде. Но, тем не менее, Александрийская школа медленно умирала вместе с упадком античного общества.
Период элементарной математики заканчивается, когда центр тяжести математических интересов переносится в область математики переменных величин. Еще в математике Древнего мира на материале изучения тригонометрических функций и при составлении их таблиц формируются представления о функциональной зависимости. Таким образом, весь период до 17 в. остается периодом элементарной математики.
Математика переменных величин
В XVII в. начинается новый период истории математики – период математики переменных величин. Его возникновение связано, прежде всего, с успехами астрономии и механики.
Кеплер в 1609-1619 гг. открыл и математически сформулировал законы движения планет. Галилей к 1638 г. создал механику свободного движения тел, основал теорию упругости, применил математические методы для изучения движения, для отыскания закономерностей между путем движения, его скоростью и ускорением. Ньютон к 1686 г. сформулировал закон всемирного тяготения.
Аналитическая геометрия начиналась с введения системы координат. В честь создателя прямоугольная система координат, состоящая из двух пересекающихся под прямым углом осей, введенных на них масштабов измерения и начала отсчета – точки пересечения этих осей – называется системой координат на плоскости. В совокупности с третьей осью она является прямоугольной декартовой системой координат в пространстве.
Дифференциальные методы решали основную задачу: зная кривую линию, найти ее касательные. Многие задачи практики приводили к постановке обратной задачи. В процессе решения задачи выяснялось, что к ней применимы интеграционные методы. Так была установлена глубокая связь между дифференциальными и интегральными методами, что создало основу для единого исчисления. Наиболее ранней формой дифференциального и интегрального исчисления является теория флюксий, построенная Ньютоном.
Математики XVIII в. работали одновременно в области естествознания и техники. Лагранж создал основы аналитической механики. Его труд показал, как много результатов можно получить в механике благодаря мощным методам математического анализа. Монументальное произведение Лапласа «Небесная механика» подвело итоги всех предшествовавших работ в этой области.
XVIII в. дал
математике мощный аппарат –
анализ бесконечно малых. В этот
период Эйлер ввел в
В XVIII в. из математического анализа выделился ряд важных математических дисциплин: теория дифференциальных уравнений, вариационное исчисление. В это время началась разработка теории вероятностей.
Математика Декарта
«Я мыслю, следовательно, я существую»
31 марта
1596 г. родился французский философ,
математик, физик и физиолог Рене
Декарт. Целью Декарта было описание
природы при помощи
В работе «Геометрия» (1637), открывшей взаимопроникновение алгебры и геометрии, Декарт ввел впервые понятия переменной величины и функции. Переменная трактуется им двояко: как отрезок переменной длины и постоянного направления (текущая координата точки, описывающей своим движением кривую) и как непрерывная числовая переменная, пробегающая совокупность чисел, выражающих этот отрезок.
Декарту принадлежит заслуга создания современных систем обозначений: он ввел знаки переменных величин (x, y, z...), коэффициентов (a, b, c...), обозначение степеней (a2, x-1...). Он сформулировал основную теорему алгебры: "число корней алгебраического уравнения равно его степени", доказательство которой было получено лишь в конце 18 в. К.Ф. Гауссом. В декартовой системе координат получили реальное истолкование отрицательные числа.
Главное достижение Декарта - построение аналитической геометрии (термин предложил Ньютон), в которой геометрические задачи переводились на язык алгебры при помощи метода координат. При переходе на алгебраический язык многие трудные геометрические задачи становятся почти тривиальными.
В 1649 г. Декарт переехал в Швецию. Это решение оказалось для него роковым. 11 февраля 1650 г. ученый умер от пневмонии.
Теория относительности Эйнштейна
В 1905 году Альберт Эйнштейн опубликовал специальную теорию относительности (СТО), которая объясняла, как интерпретировать движения между различными инерциальными системами отсчета – попросту говоря, объектами, которые движутся с постоянной скоростью по отношению друг к другу.
Эйнштейн объяснил, что когда два объекта двигаются с постоянной скоростью, следует рассматривать их движение друг относительно друга, вместо того чтобы принять один из них в качестве абсолютной системы отсчета.
Специальная теория относительности рассматривает лишь один специальный случай, когда движение прямолинейно и равномерно.
Если материальное тело ускоряется или сворачивает в сторону, законы СТО уже не действуют. Тогда в силу вступает общая теория относительности (ОТО), которая объясняет движения материальных тел в общем случае.
Теория Эйнштейна базируется на двух основных принципах:
1. Принцип
относительности: физические законы
сохраняются даже для тел, являющихся
инерциальными системами
2. Принцип
скорости света: скорость света
остается неизменной для всех
наблюдателей, независимо от их
скорости по отношению к
Одна из причин успеха Альберта Эйнштейна состоит в том, что он ставил экспериментальные данные выше теоретических. Когда в ряде экспериментов обнаружились результаты, противоречащие общепринятой теории, многие физики решили, что эти эксперименты ошибочны.
Альберт Эйнштейн был одним из первых, кто решил построить новую теорию на базе новых экспериментальных данных.
В конце 19 века физики находились в поиске таинственного эфира – среды, в которой по общепринятым предположениям должны были распространяться световые волны, подобно акустическим, для распространения которых необходим воздух, или же другая среда – твердая, жидкая или газообразная.
Вера в существование эфира привела к убеждению, что скорость света должна меняться в зависимости от скорости наблюдателя по отношению к эфиру.