Автор работы: Пользователь скрыл имя, 27 Февраля 2013 в 16:10, реферат
Принцип суми. Якщо об'єкт A можна вибрати m способами, а об'єкт B – n іншими способами, то вибір "або A, або B" можна здійснити m+n способами.
Принцип добутку. Якщо об'єкт A можна вибрати m способами і після кожного такого вибору об'єкт B може бути вибраним n способами, то вибір "A і B" в указаному порядку можна здійснити m×n способами.
Розглянемо окремі випадки бінома Ньютона:
при b=1 маємо (a+1)n = ,
при a=b=1 маємо (1+1)n = 2n = ,
при a= –1, b=1 маємо (–1+1)n = 0n = (–1)k.
За останньою рівністю, зокрема, природно означити 00 як 1, слідуючи за Доналдом Кнутом [****].
Запишемо біноміальні
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
З таблиці видно, що кожний елемент, який не є першим у своєму рядку, є сумою елемента над ним і елемента, розташованого над ним і ліворуч:
= +
Ця тотожність називається правилом додавання. Існує багато різних її доведень. Ось "лобове":
Доозначимо біноміальні
Доведемо ще одну тотожність, яка називається згорткою Вандермонда:
.
Якщо замінити k на k-m, а n – на n-m, то одержимо рівність
.
Вона має назву тотожності Коші. Доведемо спочатку цю рівність. Нехай є r дівчат і s юнаків. Праворуч маємо кількість способів вибрати з них усіх n осіб. Кожний доданок у сумі ліворуч задає кількість способів вибрати n осіб так, щоб серед них було k дівчат з r і n-k юнаків з s. Додавання цих кількостей по всіх можливих значеннях k дає кількість всіх способів вибрати з них усіх n осіб. Отже, вирази ліворуч і праворуч задають одну й ту саму кількість, тобто рівні. Якщо тепер замінити назад k на k+m, а n на n+m, одержимо початкову рівність.
Таблиця біноміальних коефіцієнтів зображається
ще у вигляді так званого арифмети
1
1 1
1 2 1
1 3 3 1
…
Розширимо поняття біноміальних коефіцієнтів на дійсні значення n. Згадаємо зв'язок між кількістю комбінацій з n елементів по k та кількістю їх розміщень без повторень: = (n)k/k!, де (n)k=n(n–1)…(n–k+1). Але останній добуток означений при будь-якому дійсному значенні n. Слідуючи Доналду Кнуту [****], замість цілого n розглянемо дійсне r: (r)k=r(r–1)…(r–k+1). Тоді за дійсних значень r означимо як (r)k/k!.