Автор работы: Пользователь скрыл имя, 01 Апреля 2013 в 10:51, контрольная работа
С помощью компьютера возможно применение математических методов и в нетрадиционных областях, где не удается построить компактные математические модели вроде дифференциальных уравнений, но удается построить модели, доступные запоминанию и изучению на компьютере. Модели для компьютеров в этих случаях представляют собой цифровое кодирование схемы, изучаемого объекта (например, языка) и отношений между его элементами (словами, фразами). Сама возможность изучения таких моделей на компьютере стимулирует появление этих моделей, а для создания обозримой модели необходимо выявление законов, действующих в исходных объектах.
Введение
1.Понятие определителей.
1.1. Определители более высоких порядков.
2. Свойства опредилителей.
Заключение
Список литературы
Содержание
Введение
1.Понятие определителей.
1.1. Определители более высоких порядков.
2. Свойства опредилителей.
Заключение
Список литературы
ВВЕДЕНИЕ
С помощью компьютера возможно применение математических методов и в нетрадиционных областях, где не удается построить компактные математические модели вроде дифференциальных уравнений, но удается построить модели, доступные запоминанию и изучению на компьютере. Модели для компьютеров в этих случаях представляют собой цифровое кодирование схемы, изучаемого объекта (например, языка) и отношений между его элементами (словами, фразами). Сама возможность изучения таких моделей на компьютере стимулирует появление этих моделей, а для создания обозримой модели необходимо выявление законов, действующих в исходных объектах. С другой стороны, получаемые на компьютере результаты (например, машинный перевод упрощенных текстов с одного языка на другой) вносят критерий практики в оценку теорий (например, лингвистических теорий), положенных в основу математической модели.
Благодаря компьютерам стало возможным рассматривать вероятностные модели, требующие большого числа пробных расчетов, имитационные модели, которые отражают моделируемые свойства объекта без упрощений (например, функциональные свойства телефонной сети).
Разнообразие задач, где могут быть использованы компьютеры, очень велико. Для решения каждой задачи нужно знать многое, связанное именно с этой задачей.
Численные методы решения систем линейных алгебраических уравнений в линейной алгебре называют первой основной задачей. К ней примыкают задачи вычисления определителей и элементов обратной матрицы, которые иногда называют второй и третьей основными задачами линейной алгебры. В данной работе описаны методы вычисления определителя матрицы и разработана программа для его вычисления с использованием компьютера, основанная на применении метода Гаусса с выбором главного элемента.
1. ПОНЯТИЕ ОПРЕДЕЛИТЕЛЕЙ
Прежде всего необходимо запомнить, что определители существуют только для матриц квадратного вида, ибо для матриц другого типа не существует определителей. В теории систем линейных уравнений и в некоторых других вопросах удобно использовать понятие определителя, или детерминанта.
Определи́тель (или детермина́нт) — одно из основных понятий линейной алгебры. Определитель матрицы является многочленом от элементов квадратной матрицы (то есть такой, у которой количество строк и столбцов равно). В общем случае матрица может быть определена над любым коммутативным кольцом, в этом случае определитель будет элементом того же кольца.
Определитель матрицы А обозначается как: det(A), |А| или Δ(A).
Пусть дана матрица второго порядка – квадратная матрица, состоящая из двух строк и двух столбцов .
Определителем второго порядка, соответствующим данной матрице, называется число, получаемое следующим образом: a11a22 – a12a21.
Определитель обозначается символом .
Итак, для того чтобы
найти определитель второго порядка
нужно из произведения элементов
главной диагонали вычесть
Примеры. Вычислить определители второго порядка.
Аналогично можно рассмотреть матрицу третьего порядка и соответствующий ей определитель.
Определителем третьего порядка, соответствующим данной квадратной матрице третьего порядка, называется число, обозначаемое и получаемое следующим образом:
Таким образом, эта формула даёт разложение определителя третьего порядка по элементам первой строки a11, a12, a13 и сводит вычисление определителя третьего порядка к вычислению определителей второго порядка.
Примеры. Вычислить определитель третьего порядка.
.
(x+3)(4x-4-3x)+4(3x-4x+4)=0.
(x+3)(x-4)+4(-x+4)=0.
(x-4)(x-1)=0.
x1 = 4, x2 = 1.
Аналогично можно ввести понятия определителей четвёртого, пятого и т.д. порядков, понижая их порядок разложением по элементам 1-ой строки, при этом знаки "+" и "–" у слагаемых чередуются.
1.1. Определители более высоких порядков.
Определитель n-го порядка
есть сумма n! членов каждый из которых соответствует одному из n! упорядоченных множеств полученных r попарными перестановками элементов из множества 1,2,…,n.
Замечание 1. Свойства определителей 3-го порядка справедливы и для определителей n-го порядка.
Замечание 2. На
практике определители высоких порядков
вычисляют с помощью разложения
по строке или столбцу. Это позволяет
понизить порядок вычисляемых
Пример. Вычислим определитель 4-го порядка с помощью разложения по 2-му столбцу. Для этого найдем и :
Следовательно,
Итак, в отличие от матрицы, которая представляют собой таблицу чисел, определитель это число, которое определённым образом ставится в соответствие матрице.
Доказательство проводится проверкой, т.е. сравнением обеих частей записанного равенства. Вычислим определители, стоящие слева и справа:
Доказательство проводится аналогично доказательству свойства 1 сравнением обеих частей. Проведём его для определителя второго порядка.
Для определителя третьего
порядка проверьте
Действительно, если переставить здесь 2-ю и 3-ю строки, то по свойству 2 этот определитель должен изменить знак, но сам определитель в данном случае не меняется, т.е. получаем |A| = –|A| или |A| = 0.
Эти три свойства являются основными свойствами определителя, вскрывающими его природу. Следующие пять свойств являются логическими следствиями трех основных свойств.
Доказательство проводится проверкой, как и свойство 1. (Самостоятельно)
Доказательство - проверкой, аналогично свойству 1.
.
Докажем это равенство, используя предыдущие свойства определителя.
Эти свойства определителей довольно часто используются при вычислении определителей и в различных задачах.
Определители более высоких порядков.
ЗАКЛЮЧЕНИЕ
В данной работе рассмотрено понятие – определитель, подробно рассмотрены определители второго и третьего порядков, часто встречающиеся на практике. Для определителя третьего порядка приводятся два способа вычисления.
СПИСОК ЛИТЕРАТУРЫ