Автор работы: Пользователь скрыл имя, 30 Октября 2013 в 11:59, реферат
В данной работе я рассмотрю применения производной в различных науках и отраслях. Работа разбита на главы, в каждой из которых рассматривается одна из сторон дифференциального исчисления (геометрический, физический смысл и т. д.)
В 17 веке на основе учения Г.Галилея о движении активно развивалась кинематическая концепция производной. Различные изложения стали встречаться в работах у Декарта, французского математика Роберваля, английского ученого Л. Грегори. Большой вклад в изучение дифференциального исчисления внесли Лопиталь, Бернулли, Лагранж, Эйлер, Гаусс.
Сплайн-функция Ŝk(x) є Sk(Kn) называется интерполирующей сплайн-функцией, если Ŝk(xj) = f(xj) для j = 0,1,…,n
В приложениях часто бывает достаточно выбрать k=3 и применить т. н. кубическую интерполяцию.
Т. к. s(x) на каждом частичном интервале есть многочлен третьей степени, то для x є [xj-1 ,xj]
Здесь s2j, cj1, cj0 неизвестны для j = 1, 2, …, n
Последние исключаются в силу требования s(xj) = yj:
Дифференцируя эту функцию и учитывая, что s'(x) на всем интервале и, следовательно, в частности, в узлах должна быть непрерывна, окончательно получаем систему уравнений:
относительно n+1 неизвестных s20, s21,…, s2n. Для однозначного их определения в зависимости от задачи добавляются еще два уравнения:
Нормальный случай(N):
Периодический случай(P) (т. е. f(x+(xn-x0))=f(x)):
Заданное сглаживание на границах:
Пример: сплайн-интерполяция функции f(x)=sin x, n=4.
Функция периодическая, поэтому используем случай P.
j |
xj |
yj |
hj |
yj-yj-1 |
0 |
0 |
0 |
π/2 |
1 |
1 |
π/2 |
1 |
π/2 |
-1 |
2 |
π |
0 |
π/2 |
-1 |
3 |
3π/2 |
-1 |
π/2 |
1 |
4 |
2π |
0 |
Сплайн-функция получается такая:
5-2. Формула Тейлора
Разложение функций в
Говорят, что функция разлагается на данном промежутке в степенной ряд, если существует такой степенной ряд a0 + a1(x - a) + a2(x - a)2 + … + an(x - a)n + …, который на этом промежутке сходится к данной функции. Можно доказать, что это разложение единственно:
Пусть функция f(x) бесконечно дифференцируема в точке a. Степенной ряд вида
называется рядом Тейлора для функции f(x), записанным по степеням разности (x - a). Вообще, чтобы ряд Тейлора сходился к f(x) необходимо и достаточно, чтобы остаточный член ряда стремился к 0. При a = 0 ряд Тейлора обычно называют рядом Маклорена.
С помощью ряда Маклорена можно получить простые разложения элементарных функций:
|
|
|
5-3. Приближенные вычисления
Часто бывает, что функцию f(x) и ее производную легко вычислить при x = a, а для значений x, близких к a, непосредственное вычисление функции затруднительно. Тогда пользуются приближенной формулой, полученной с помощью формулы Тейлора:
Пример: Извлечь квадратный корень из 3654
Решение: , x0=3654. Легко вычисляются значения f(x) и при x = 3600. Формула при a = 3600, b=54 дает:
С помощью этой формулы можно получить несколько удобных формул для приближенных вычислений:
|
Заключение
Применение производной
Литература
М. Я. Выгодский |
Справочник по высшей математике |
И. Н. Бронштейн, К. А. Семендяев |
Справочник по математике для инженеров и учащихся ВТУЗов |
И. М. Уваренков, М. З. Маллер |
Курс математического анализа, |
В. А. Дударенко, А.А. Дадаян |
Математический анализ |
Н. С. Пискунов |
Дифференциальное и |
Т. И. Трофимова |
Курс физики |
О. О. Замков А. В. Толстопятенко Ю. Н. Черемных |
Математические методы в экономике |
А. С. Солодовников В. А. Бабайцев А. В. Браилов И .Г. Шандра |
Математика в экономике |
Содержание:
Введение
1. Понятие производной
1-1. Исторические сведения
1-2. Понятие производной
1-3. Правила дифференцирования и таблица производных
2. Геометрический смысл
2-1. Касательная к кривой
2-2. Касательная плоскость к поверхности
3. Использование производной в физике
3-1. Скорость материальной точки
3-2. Теплоемкость при данной температуре
3-3. Мощность
4. Дифференциальное исчисление в экономике
4-1. Исследование функций
4-2. Эластичность спроса
4-3. Предельный анализ
5. Производная в приближенных вычислениях
5-1. Интерполяция
5-2. Формула Тейлора
5-3. Приближенные вычисления
Заключение
Список использованной литературы