Автор работы: Пользователь скрыл имя, 21 Апреля 2014 в 22:37, курсовая работа
На разных этапах статистического исследования возникает необходимость в формулировании и экспериментальной проверке некоторых предположительных утверждений (гипотез).
Во многих прикладных задачах исследователь сталкивается с наблюдениями (различными явлениями природы, результатами эксперимента) имеющими случайных характер. В таких случаях исследователю необходимо принять решения об истинном состоянии явления, однако это решение не может быть априорно правильным (возможны ошибки), так же не существует очевидного и единственно верного правила выбора этого решения.
ВВЕДЕНИЕ………………………………………………………………..3
Глава 1. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ….………….4
Определение и виды………………………….…………………….4
Общая статистическая схема статистического критерия..………5
Характеристики качества критерия..……………………………...7
Построение статистического критерия...........................................9
Уровень значимости и мощность критерия.…………………….11
Глава 2. СТАТИСТИЧЕСКАЯ ОБРАБОТКА ДАННЫХ…..………13
1. t-критерий Стьюдента
2. Критерий Фишера
Характеристики качества критерия
Наиболее важной характеристикой качества критерия является мощность.
Одновременное уменьшение ошибок 1-го и 2-го рода возможно лишь при увеличении объема выборок. Поэтому обычно при заданном уровне значимости отыскивается критерий с наибольшей мощностью.
Критическая область должна быть расположена так, чтобы при заданном уровне значимости (вероятности ошибки первого рода) вероятность ошибки второго рода была бы минимальной. В этом случае критическая область называется наилучшей критической областью (НКО).
Критерий, использующий НКО, имеет максимальную мощность. [5]
1.5 Уровень значимости и мощность критерия
Используя критерий при проверке нулевой гипотезы возможны ошибки двух родов. Ошибка первого рода состоит в том, что гипотеза отклоняется тогда, как она верна. Вероятность этой ошибки равна . А сама ошибка называется уровнем значимости. Значение уровня значимости обычно задается близким к нулю (например, 0.005; 0.01; 0.001 и т. д.), потому что, чем меньше значение уровня значимости, тем меньше вероятность совершить ошибку первого рода, состоящую в опровержении верной гипотезы . = 1 – – вероятность принятия верной основной гипотезы. Ошибка второго рода состоит в том, что гипотеза принимается тогда, как она не верна. Вероятность этой ошибки равна . Отметим, что вероятность называется мощностью критерия . – вероятность принятия верной альтернативной гипотезы.
Таблица 1.5 – Зависимость принимаемой гипотезы
от верной
Принимаемая гипотеза | |||
Верная гипотеза |
| ||
|
Последствия ошибок 1-го, 2-го рода могут быть совершенно различными: в одних случаях надо минимизировать , в другом — . Так, применительно к радиолокации говорят, что — вероятность пропуска сигнала, — вероятность ложной тревоги. Применительно к производству, к торговле можно сказать, что α — риск поставщика (т.е. забраковка по выборке всей партии изделий, которые удовлетворяют стандарту), — риск потребителя (т.е. прием по выборке всей партии изделий, не удовлетворяющей стандарту). Применительно к судебной системе, ошибка 1-го рода приводит к оправданию виновного, ошибка 2-го рода — осуждению невиновного. [4]
Глава 2. СТАТИсТИЧЕСКАЯ ОБРАБОТКА ДАННЫХ
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ