Системы счисления

Автор работы: Пользователь скрыл имя, 06 Февраля 2013 в 13:12, доклад

Описание работы

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

Файлы: 1 файл

Системы счисления.docx

— 41.74 Кб (Скачать файл)

 

 

 

Антипов Владимир

9 класс


FoX_Company

Системы счисления

Сообщение


 

 

Система счисле́ния — символический метод записи чисел, представление чисел с помощью письменных знаков.

Система счисления:

  • даёт представления множества чисел (целых и/или вещественных);
  • даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);
  • отражает алгебраическую и арифметическую структуру чисел.

Системы счисления  подразделяются на позиционные, непозиционные и смешанные.

 

Позиционные системы счисления

 

В позиционных  системах счисления один и тот  же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

Под позиционной  системой счисления обычно понимается b-ричная система счисления, которая определяется целым числом b>1, называемым основанием системы счисления.

Например, число сто три представляется в десятичной системе счисления в виде:

103 = 1 * 102 + 0 * 101 + 3 * 100

 

Наиболее  употребляемыми в настоящее время  позиционными системами являются:

  • 1 — единичная (счёт на пальцах, зарубки, узелки «на память» и др.);
  • 2 — двоичная (в дискретной математике, информатике, программировании);
  • 3 — троичная;
  • 8 — восьмеричная;
  • 10 — десятичная (используется повсеместно);
  • 12 — двенадцатеричная (счёт дюжинами);
  • 13 — тринадцатеричная;
  • 16 — шестнадцатеричная (используется в программировании, информатике);
  • 60 — шестидесятеричная (единицы измерения времени, измерение углов и, в частности, координат, долготы и широты).

Смешанные системы счисления

Смешанная система счисления является обобщением b-ричной системы счисления и также зачастую относится к позиционным системам счисления.

Наиболее  известным примером смешанной системы  счисления является представление  времени в виде количества суток, часов, минут и секунд. При этом величина «d дней, h часов, m минут, S секунд» соответствует значению

D * 24 * 60 * 60 + h * 60 * 60 + m * 60 + S секунд

Факториальная система  счисления

 

Факториальная система счисления используется при декодировании перестановок списками инверсий: имея номер перестановки, можно воспроизвести её саму следующим образом: число, на единицу меньшее номера (нумерация начинается с нуля) записывается в факториальной системе счисления, при этом коэффициент при числе i! будет обозначать число инверсий для элемента i+1 в том множестве, в котором производятся перестановки (число элементов меньших i+1, но стоящих правее его в искомой перестановке)

Пример: рассмотрим множество перестановок из 5 элементов, всего их 5! = 120 (от перестановки с  номером 0 — (1,2,3,4,5) до перестановки с номером 119 — (5,4,3,2,1)), найдём 101-ую перестановку: 100 = 4!*4 + 3!*0 + 2!*2 + 1!*0 = 96 + 4; положим ti — коэффициент при числе i!, тогда t4 = 4, t3 = 0, t2 = 2, t1 = 0 , тогда: число элементов меньших 5, но стоящих правее равно 4; число элементов меньших 4, но стоящих правее равно 0; число элементов меньших 3, но стоящих правее равно 2; число элементов меньших 2, но стоящих правее равно 0 (последний элемент в перестановке «ставится» на единственное оставшееся место) — таким образом, 101-я перестановка будет иметь вид: (5,3,1,2,4) Проверка данного метода может быть осуществлена путём непосредственного подсчёта инверсий для каждого элемента перестановки.

Непозиционные системы счисления

В непозиционных  системах счисления величина, которую  обозначает цифра, не зависит от положения  в числе. При этом система может  накладывать ограничения на положение  цифр, например, чтобы они были расположены  в порядке убывания.

Системы счисления разных народов

Древнеегипетская  система счисления

Древнеегипетская десятичная непозиционная система счисления возникла во второй половине третьего тысячелетия до н. э. Для обозначения чисел 0, 1, 10, 10², 10³, 104, 105, 106, 107 использовались специальные цифры. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из цифр повторялась не более девяти раз. Значение числа равно простой сумме значений цифр, участвующих в его записи.

Еврейская система  счисления

Еврейская система счисления в качестве цифр использует 22 буквы еврейского алфавита. Каждая буква имеет своё числовое значение от 1 до 400. Ноль отсутствует. Цифры, записанные таким образом, наиболее часто можно встретить в нумерации лет по иудейскому календарю.

 

 

 

Римская система  счисления

Каноническим примером почти непозиционной  системы счисления является римская, в которой в качестве цифр используются латинские буквы: 
I обозначает 1, 
V — 5, 
X — 10, 
L — 50, 
C — 100, 
D — 500, 
M — 1000

Например, II = 1 + 1 = 2 
здесь символ I обозначает 1 независимо от места в числе.

На самом деле, римская система  не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё, например:

IV = 4, в то время как: 
VI = 6

Система счисления  майя

Майя использовали 20-ричную систему счисления за одним исключением: во втором разряде было не 20, а 18 ступеней, то есть за числом (17)(19) сразу следовало число (1)(0)(0). Это было сделано для облегчения расчётов календарного цикла, поскольку (1)(0)(0) = 360 примерно равно числу дней в солнечном году.

Для записи основными знаками были точки (единицы) и отрезки (пятёрки).

Кипу инков

Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I—II тысячелетии н. э., была узелковая письменность Инков — кипу, состоявшая как из числовых записей десятичной системы, так и не числовых записей в двоичной системе кодирования. В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных. Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта как двойная запись.


Информация о работе Системы счисления