Автор работы: Пользователь скрыл имя, 03 Апреля 2013 в 13:55, задача
Задача 1. В группе 30 студентов. Необходимо выбрать старосту, заместителя старосты и профорга. Сколько существует способов это сделать?
Решение. Старостой может быть выбран любой из 30 студентов, заместителем - любой из оставшихся 29, а профоргом – любой из оставшихся 28 студентов, т.е. n1=30, n2=29, n3=28. По правилу умножения общее число N способов выбора старосты, его заместителя и профорга равно N=n1´n2´n3=30´29´28=24360.
Задача 6. Три экзаменатора принимают экзамен по некоторому предмету у группы в 30 человек, причем первый опрашивает 6 студентов, второй — 3 студентов, а третий — 21 студента (выбор студентов производится случайным образом из списка). Отношение трех экзаменаторов к слабо подготовившимся различное: шансы таких студентов сдать экзамен у первого преподавателя равны 40%, у второго — только 10%, у третьего — 70%. Найти вероятность того, что слабо подготовившийся студент сдаст экзамен.
Решение. Обозначим через гипотезы, состоящие в том, что слабо подготовившийся студент отвечал первому, второму и третьему экзаменатору соответственно. По условию задачи
Пусть событие A={слабо подготовившийся студент сдал экзамен}. Тогда снова в силу условия задачи
По формуле полной вероятности получаем:
Задача 7. Фирма имеет три источника поставки комплектующих – фирмы А, B, С. На долю фирмы А приходится 50% общего объема поставок, В – 30% и С – 20%. Из практики известно, что среди поставляемых фирмой А деталей 10% бракованных, фирмой В – 5% и фирмой С – 6%. Какова вероятность, что взятая наугад деталь окажется годной?
Решение. Пусть событие G – появление годной детали. Вероятности гипотез о том, что деталь поставлена фирмами А, B, С, равны сответственно Р(А)=0,5, Р(В)=0,3, Р(С)=0,2. Условные вероятности появления при этом годной детали равны Р(G|A)=0,9, P(G|B)=0,95, P(G|C)=0,94 (как вероятности противоположных событий к появлению бракованной). По формуле полной вероятности получаем:
P(G)=0,5×0,9+0,3×0,95+0,2×0,
Задача 8 (см. задачу 6). Пусть известно, что студент не сдал экзамен, т.е. получил оценку «неудовлетворительно». Кому из трех преподавателей вероятнее всего он отвечал?
Решение. Вероятность получить «неуд» равна . Требуется вычислить условные вероятности. По формулам Байеса получаем:
, и аналогично,
, .
Отсюда следует, что, вероятнее всего, слабо подготовившийся студент сдавал экзамен третьему экзаменатору.
4. Повторные независимые испытания. Теорема Бернулли
Задача 1. Игральная кость брошена 6 раз. Найти вероятность того, что ровно 3 раза выпадет «шестерка».
Решение. Шестикратное бросание кости можно рассматривать как последовательность независимых испытаний с вероятностью успеха («шестерки»), равной 1/6, и вероятностью неудачи — 5/6. Искомую вероятность вычисляем по формуле .
Задача 2. Монета бросается 6 раз. Найти вероятность того, что герб выпадет не более, чем 2 раза.
Решение. Искомая вероятность равна сумме вероятностей трех событий, состоящих в том, что герб не выпадет ни разу, либо один раз, либо два раза:
Р(А) = Р6(0) + Р6(1) + Р6(2) = .
Задача 3. Аудитор обнаруживает финансовые нарушения у проверяемой фирмы с вероятностью 0,9. Найти вероятность того, что среди 4 фирм-нарушителей будет выявлено больше половины.
Решение. Событие состоит в том, что из 4 фирм-нарушителей будет выявлено три или четыре, т.е.
.
Задача 4. Монета подбрасывается 3 раза. Найти наиболее вероятное число успехов (выпадений герба).
Решение. Возможными значениями для числа успехов в трех рассматриваемых испытаниях являются m = 0, 1, 2 или 3. Пусть Am - событие, состоящее в том, что при трех подбрасываниях монеты герб появляется m раз. По формуле Бернулли легко найти вероятности событий Am (см. таблицу):
m |
0 |
1 |
2 |
3 |
Pn(m) |
1/8 |
3/8 |
3/8 |
1/8 |
Из этой таблицы видно, что наиболее вероятными значениями являются числа 1 и 2 (их вероятности равны 3/8). Этот же результат можно получить и из теоремы 2. Действительно, n=3, p=1/2, q=1/2. Тогда
, т.е. .
Задача 5. В результате каждого визита страхового агента договор заключается с вероятностью 0,1. Найти наивероятнейшее число заключенных договоров после 25 визитов.
Решение. Имеем n=10, p=0,1, q=0,9. Неравенство для наиболее вероятного числа успехов принимает вид: 25×0,1–0,9£m*£25×0,1+0,1 или 1,6£m*£2,6. У этого неравенства только одно целое решение, а именно, m*=2.
Задача 6. Известно, что процент брака для некоторой детали равен 0,5%. Контролер проверяет 1000 деталей. Какова вероятность обнаружить ровно три бракованные детали? Какова вероятность обнаружить не меньше трех бракованных деталей?
Решение. Имеем 1000 испытаний Бернулли с вероятностью «успеха» р=0,005. Применяя пуассоновское приближение с λ=np=5, получаем
1) P1000(3)» ;
2) P1000(m³3)=1-P1000(m<3)=1-[ ]»1- ,
и Р1000(3)»0,14; Р1000(m³3)»0,875.
Задача 7. Вероятность покупки при посещении клиентом магазина составляет р=0,75. Найти вероятность того, что при 100 посещениях клиент совершит покупку ровно 80 раз.
Решение. В данном случае n=100, m=80, p=0,75, q=0,25. Находим , и определяем j(x)=0,2036, тогда искомая вероятность равна Р100(80)= .
Задача 8. Страховая компания заключила 40000 договоров. Вероятность страхового случая по каждому из них в течение года составляет 2%. Найти вероятность, что таких случаев будет не более 870.
Решение. По условию задачи n=40000, p=0,02. Находим np=800, . Для вычисления Р(m£870) воспользуемся интегральной теоремой Муавра-Лапласа:
Р(0<m£870)= Ф0(х2) –Ф0(х1), где и .
Находим по таблице значений функции Лапласа:
Р(0<m£870)=Ф0(х2)–Ф0(х1)=Ф0(2,
Задача 9. Вероятность появления события в каждом из 400 независимых испытаний равна 0,8. Найти такое положительное число e, чтобы с вероятностью 0,99 абсолютная величина отклонения относительной частоты появления события от его вероятности не превышала e.
Решение. По условию задачи p=0,8, n=400. Используем следствие из интегральной теоремы Муавра-Лапласа: . Следовательно, . По таблице для функции Лапласа определяем . Отсюда e=0,0516.
Задача 10. Курс акции за день может подняться на 1 пункт с вероятностью 50%, опуститься на 1 пункт с вероятностью 30% и остаться неизменным с вероятностью 20%. Найти вероятность того, что за 5 дней торгов курс поднимется на 2 пункта.
Решение. Возможны только следующие два варианта развития событий:
1) курс растет 2 дня, ни разу не падает, не меняется 3 дня;
2) курс растет 3 дня, падает 1 день, не меняется 1 день.
Таким образом,
5. Дискретные случайные величины
Задача 1. В связке из 3 ключей только один ключ подходит к двери. Ключи перебирают до тех пор, пока не отыщется подходящий ключ. Построить закон распределения для случайной величины x – числа опробованных ключей.
Решение. Число опробованных ключей может равняться 1, 2 или 3. Если испытали только один ключ, это означает, что этот первый ключ сразу подошел к двери, а вероятность такого события равна 1/3. Итак, Далее, если опробованных ключей было 2, т.е. x=2, это значит, что первый ключ не подошел, а второй – подошел. Вероятность этого события равна 2/3×1/2=1/3. То есть, Аналогично вычисляется вероятность В результате получается следующий ряд распределения:
x |
1 |
2 |
3 |
P |
1/3 |
1/3 |
1/3 |
Задача 2. Построить функцию распределения Fx(x) для случайной величины x из задачи 1.
Решение. Случайная величина x имеет три значения 1, 2, 3, которые делят всю числовую ось на четыре промежутка: . Если x<1, то неравенство x£x невозможно (левее x нет значений случайной величины x) и значит, для такого x функция Fx(x)=0.
Если 1£x<2, то неравенство x£x возможно только если x=1, а вероятность такого события равна 1/3, поэтому для таких x функция распределения Fx(x)=1/3.
Если 2£x<3, неравенство x£x означает, что или x=1, или x=2, поэтому в этом случае вероятность P(x<x)=P(x=1)+P(x=2)=2/3, т.е. Fx(x)=2/3.
И, наконец, в случае x³3 неравенство x£x выполняется для всех значений случайной величины x, поэтому P(x<x)=P(x=1)+P(x=2)+P(x=3)=1, т.е. Fx(x)=1.
Итак, мы получили следующую функцию:
Задача 3. Совместный закон распределения случайных величин x и h задан c помощью таблицы
x h |
1 |
2 |
–1 |
1/16 |
3/16 |
0 |
1/16 |
3/16 |
1 |
1/8 |
3/8 |
Вычислить частные законы распределения составляющих величин x и h. Определить, зависимы ли они. Вычислить вероятность .
Решение. Частное распределение для x получается суммированием вероятностей в строках:
;
;
.
Аналогично получается частное распределение для h:
;
.
Полученные вероятности можно записать в ту же таблицу напротив соответствующих значений случайных величин:
x h |
1 |
2 |
px |
–1 |
1/16 |
3/16 |
1/4 |
0 |
1/16 |
3/16 |
1/4 |
1 |
1/8 |
3/8 |
1/2 |
ph |
1/4 |
3/4 |
1 |
Теперь ответим на вопрос о независимости случайных величин x и h. С этой целью для каждой клетки совместного распределения вычислим произведение (т.е. сумм по соответствующей строке и столбцу) и сравним его со значением вероятности в этой клетке. Например, в клетке для значений x=-1 и h=1 стоит вероятность 1/16, а произведение соответствующих частных вероятностей 1/4×1/4 равно 1/16, т.е. совпадает с совместной вероятностью. Это условие так же проверяется в оставшихся пяти клетках, и оно оказывается верным во всех. Следовательно, случайные величины x и h независимы.
Заметим, что если бы наше условие нарушалось хотя бы в одной клетке, то величины следовало бы признать зависимыми.
Для вычисления вероятности отметим клетки, для которых выполнено условие . Таких клеток всего три, и соответствующие вероятности в этих клетках равны 1/8, 3/16, 3/8. Их сумма равна 11/16, это и есть искомая вероятность. Вычисление этой вероятности можно записать так:
Задача 4. Пусть случайная величина ξ имеет следующий закон распределения:
x |
–1 |
0 |
2 |
P |
1/4 |
1/4 |
1/2 |
Вычислить математическое ожидание Mx, дисперсию Dx и среднеквадратическое отклонение s.
Решение. По определению математическое ожидание x равно
Далее
а потому
Среднее квадратическое отклонение .
Задача 5. Для пары случайных величин из задачи 3 вычислить .
Решение. Воспользуемся формулой . А именно, в каждой клетке таблицы выполняем умножение соответствующих значений и , результат умножаем на вероятность pij, и все это суммируем по всем клеткам таблицы. В итоге получаем:
Задача 6. Для пары случайных величин из задачи 3 вычислить ковариацию cov(x,h).
Решение. В предыдущей задаче уже было вычислено математическое ожидание . Осталось вычислить и . Используя полученные в решении задачи 3 частные законы распределения, получаем
и значит,
,
чего и следовало ожидать вследствие независимости случайных величин.
Задача 7. Случайный вектор (x,h) принимает значения (0,0), (1,0), (–1,0), (0,1) и (0,–1) равновероятно. Вычислить ковариацию случайных величин x и h. Показать, что они зависимы.
Решение. Поскольку Р(x=0)=3/5, P(x=1)=1/5, P(x=–1)=1/5; Р(h=0)=3/5, P(h=1)=1/5, P(h=–1)=1/5, то Мx=3/5´0+1/5´1+1/5´(–1)=0 и Мh=0;
М(xh)=0´0´1/5+1´0´1/5–1´0´1/5+
Получаем cov(x,h)=М(xh)–МxМh=0, и случайные величины некоррелированны.
Однако они зависимы. Пусть x=1, тогда условная вероятность события
{h=0} равна Р(h=0|x=1)=1 и не равна безусловной Р(h=0)=3/5, или вероятность {ξ=0,η=0} не равна
произведению вероятностей: Р(x=0,h=0)=1/5¹Р(x=0)Р(h=0)=9/