Автор работы: Пользователь скрыл имя, 08 Января 2013 в 18:27, реферат
Теория вероятностей - математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных каким-либо образом с первыми.
1. 0 £ Р (А) £ 1,
2. P (U) = 1,
3. Если события A1,..., An попарно несовместны и А - их сумма, то
Р (А) = Р (A1) + P (A2) + … + Р (An).
Для
создания полноценной математической
теории требуют, чтобы условие 3 выполнялось
и для бесконечных
Предельные теоремы.
При формальном изложении теории вероятностей предельные теоремы появляются в виде своего рода надстройки над ее элементарными разделами, в которых все задачи имеют конечный, чисто арифметический характер. Однако познавательная ценность В. т. раскрывается только предельными теоремами. Так, Теорема Бернулли показывает, что при независимых испытаниях частота появления какого-либо события, как правило, мало отклоняется от его вероятности, а Теорема Лапласа указывает вероятности тех или иных отклонений. Аналогично смысл таких характеристик случайной величины, как её математическое ожидание и дисперсия, разъясняется законом больших чисел и центральной предельной теоремой
Пусть
X1, Х2,..., Xn,... (7)
- независимые
случайные величины, имеющие одно
и то же распределение
Yn = (X1 + X2 + … +Xn)/n.
В соответствии
с законом больших чисел, каково
бы ни было e > 0, вероятность неравенства
|Yn - a| £ e имеет при n ®¥ пределом 1, и,
таким образом, Yn как правило, мало
отличается от а. Центральная предельная
теорема уточняет этот результат, показывая,
что отклонения Yn от а приближённо
подчинены нормальному
В 20-х гг. 20 в. было обнаружено, что даже в схеме последовательности одинаково распределённых и независимых случайных величин могут вполне естественным образом возникать предельные распределения, отличные от нормального. Так, например, если X1 время до первого возвращения некоторой случайно меняющейся системы в исходное положение, Х2 - время между первым и вторым возвращениями и т.д., то при очень общих условиях распределение суммы X1 +... + Xn (то есть времени до n-говозвращения) после умножения на n 1/a (а - постоянная, меньшая 1) сходится к некоторому предельному распределению. Таким образом, время до n-го возвращения растет, грубо говоря, как n 1/a, то есть быстрее n (в случае приложимости закона больших чисел оно было бы порядка n).
Механизм
возникновения большинства
Случайные процессы.
В ряде
физических и химических исследований
последних десятилетий возникла
потребность, наряду с одномерными
и многомерными случайными величинами,
рассматривать случайные
Исторически первыми изучались марковские процессы. Случайный процесс Х (t) называется марковским, если для любых двух моментов времени t0 и t1 (t0 < t1) условное распределение вероятностей X (t1) при условии, что заданы все значения Х (t) при t £ t0, зависит только от X (t0) (в силу этого марковские случайные процессы иногда называют процессами без последействия). Марковские процессы являются естественным обобщением детерминированных процессов, рассматриваемых в классической физике. В детерминированных процессах состояние системы в момент времени t0 однозначно определяет ход процесса в будущем; в марковских процессах состояние системы в момент времени t0 однозначно определяет распределение вероятностей хода процесса при t > t0, причём никакие сведения о ходе процесса до момента времени t0 не изменяют это распределение.
Вторым
крупным направлением теории случайных
процессов является теория стационарных
случайных процессов. Стационарность
процесса, то есть неизменность во времени
его вероятностных
где
z (l) случайная функция с
Теория
случайных процессов тесно
Историческая справка.
Теория
вероятностей возникла в середине 17
в. Первые работы по теории вероятностей,
принадлежащие французским
Следующий
(второй) период истории теории вероятностей
(18 в. и начало 19 в.) связан с именами
А. Муавра (Англия), П. Лапласа (Франция),
К. Гаусса (Германия) и С. Пуассона (Франция).
Это - период, когда теория вероятностей
уже находит ряд весьма актуальных
применений в естествознании и технике
(главным образом в теории ошибок
наблюдений, развившейся в связи
с потребностями геодезии и астрономии,
и в теории стрельбы). К этому
периоду относится
Третий период истории теории вероятностей. (2-я половина 19 в.) связан в основном с именами русских математиков П. Л. Чебышева, А. М. Ляпунова и А. А. Маркова (старшего). Теория вероятностей развивалась в России и раньше (в 18 в. ряд трудов по В. т. был написан работавшими в России Л. Эйлером, Н. Бернулли и Д. Бернулли; во второй период развития теории вероятностей следует отметить работы М. В. Остроградского по вопросам теории вероятностей, связанным с математической статистикой, и В. Я. Буняковского по применениям теории вероятностей к страховому делу, статистике и демографии). Со 2-й половины 19 в. исследования по теории вероятностей в России занимают ведущее место в мире. Чебышев и его ученики Ляпунов н Марков поставили и решили ряд общих задач в теории вероятностей, обобщающих теоремы Бернулли и Лапласа. Чебышев чрезвычайно просто доказал (1867) закон больших чисел при весьма общих предположениях. Он же впервые сформулировал (1887) центральную предельную теорему для сумм независимых случайных величин и указал один из методов её доказательства. Другим методом Ляпунов получил (1901) близкое к окончательному решение этого вопроса. Марков впервые рассмотрел (1907) один случай зависимых испытаний, который впоследствии получил название цепей Маркова.
В Западной Европе во 2-й половине 19 в. получили большое развитие работы по математической статистике (в Бельгии - А. Кетле, в Англии - Ф. Гальтон) и статистической физике (в Австрии - Л. Больцман), которые наряду с основными теоретическими работами Чебышева, Ляпунова и Маркова создали основу для существенного расширения проблематики теории вероятностей в четвёртом (современном) периоде её развития. Этот период истории теории вероятностей характеризуется чрезвычайным расширением круга её применений, созданием нескольких систем безукоризненно строгого математического обоснования теории вероятностей, новых мощных методов, требующих иногда применения (помимо классического анализа) средств теории множеств, теории функций действительного переменного и функционального анализа. В этот период при очень большом усилении работы по теории вероятностей за рубежом (во Франции - Э. Борель, П. Леви, М. Фреше, в Германии - Р. Мизес, в США - Н. Винер, В. Феллер, Дж. Дуб, в Швеции - Г. Крамер) советская наука продолжает занимать значительное, а в ряде направлений и ведущее положение. В нашей стране новый период развития теории вероятностей открывается деятельностью С. Н. Бернштейна, значительно обобщившего классические предельные теоремы Чебышева, Ляпунова и Маркова и впервые в России широко поставившего работу по применениям теории вероятностей к естествознанию. В Москве А. Я. Хинчин и А. Н. Колмогоров начали с применения к вопросам теории вероятностей методов теории функций действительного переменного. Позднее (в 30-х гг.) они (и Е. Е. Слуцкий) заложили основы теории случайных процессов. В. И. Романовский (Ташкент) и Н. В. Смирнов (Москва) поставили на большую высоту работу по применениям теории вероятностей к математической статистике. Кроме обширной московской группы специалистов по теории вероятностей, в настоящее время в России разработкой проблем В. т. занимаются в Ст-Петербурге и в Киеве.
Список литературы
Гнеденко Б. В. и Хинчин А. Я., Элементарное введение в теорию вероятностей, 3 изд., М. - Л., 1952;
Гнеденко Б. В., Курс теории вероятностей, 4 изд., М., 1965
Феллер В., Введение в теорию вероятностей и её приложение (Дискретные распределения), пер. с англ., 2 изд., т. 1-2, М., 1967.
Бернштейн С. Н., Теория вероятностей, 4 изд., М. - Л., 1946
Для
подготовки данной работы были использованы
материалы с сайта http://med-