Автор работы: Пользователь скрыл имя, 27 Мая 2013 в 05:39, контрольная работа
В каждом варианте приведены поквартальные данные о кредитах от коммерческого банка на жилищное строительство (в условных единицах) за 4 года (всего 16 кварталов, первая строка соответствует первому кварталу первого года).
1) Построить адаптивную мультипликативную модель Хольта-Уинтерса с учетом сезонного фактора, приняв параметры сглаживания α_1=0,3; α_2=0,6; α_3=0,3.
Задача 1 3
Задача 2 8
Задача 3 14
Содержание
Задача 1 3
Задача 2 8
Задача 3 14
В каждом варианте приведены поквартальные данные о кредитах от коммерческого банка на жилищное строительство (в условных единицах) за 4 года (всего 16 кварталов, первая строка соответствует первому кварталу первого года).
1) Построить
адаптивную мультипликативную
2) Оценить
точность построенной модели
с использованием средней
3) Оценить
адекватность построенной
- случайности остаточной компоненты по критерию пиков;
- независимости уровней ряда остатков по (критические значения и ) и по первому коэффициенту автокорреляции при критическом значении ;
- нормальности
распределения остаточной
4) Построить точечный прогноз на 4 шага вперед, т.е. на 1 год.
5) Отразить
на графике фактические,
квартал |
|
1 |
38 |
2 |
48 |
3 |
57 |
4 |
37 |
5 |
40 |
6 |
52 |
7 |
63 |
8 |
38 |
9 |
44 |
10 |
56 |
11 |
67 |
12 |
41 |
13 |
49 |
14 |
60 |
15 |
72 |
16 |
44 |
Решение:
Рис. 1. Предварительный расчет
Затем построим модель Хольта-Уинтерса (рис. 2, 3).
Рис. 2. Формулы для построения модели Хольта-Уинтерса
Рис. 3. Построение модели Хольта-Уинтерса
Рис. 4. Расчеты для оценки качества модели
Рис. 5. Оценка качества модели
- случайности остаточной компоненты по критерию пиков.
Так как p>pкр (10>6) (см. рис. 4, 5), то условие случайности уровней ряда остатков выполнено.
- независимости
уровней ряда остатков по d-
d=1,3042 (см. рис. 4, 5). Так как d1<d<d2, то критерий не дает ответа на вопрос о независимости уровней ряда остатков.
|r(1)|=0,363. Так как |r(1)|>r кр, то уровни ряда остатков не являются независимыми.
- нормальности
распределения остаточной
RS=3,82. Так как 3<RS<4,21, то уровни ряда остатков подчиняются нормальному распределению
Рис. 6. График фактических, расчетных и прогнозных данных
Даны цены (открытия, максимальная, минимальная и закрытия) за 10 дней. Интервал сглаживания принять равным пяти дням. Рассчитать:
- экспоненциальную скользящую среднюю;
- момент;
- скорость изменения цен;
- индекс относительной силы;
- %R, %K, %D.
Расчеты проводить для всех дней, для которых эти расчеты можно выполнить на основании имеющихся данных.
Дни |
Цены | ||
макс. |
мин. |
закр. | |
1 |
663 |
605 |
610 |
2 |
614 |
577 |
614 |
3 |
639 |
580 |
625 |
4 |
625 |
572 |
574 |
5 |
600 |
553 |
563 |
6 |
595 |
563 |
590 |
7 |
608 |
590 |
598 |
8 |
610 |
573 |
580 |
9 |
595 |
575 |
595 |
10 |
600 |
580 |
580 |
Решение:
- экспоненциальная скользящая средняя EMA (рис. 8);
- момент МОМ (рис. 8);
- скорость изменения цен ROC (рис. 8);
- индекс относительной силы RSI (рис. 8);
- %R, %K, %D (рис. 10).
Рис. 7. Расчет осцилляторов и экспоненциальной скользящей средней
Рис. 8. Осцилляторы и экспоненциальная скользящая средняя
Рис. 9. Расчет стохастических линий
Рис. 10. Стохастические линии
Результаты расчетов оформим на графиках (рис. 11 – 16).
Рис. 11. График исходных данных и экспоненциальной скользящей средней
В 5 – 6 день экспоненциальная скользящая средняя имеет нисходящий характер, это говорит о снижении цен в этот период. В 7 день кривая пересекает график цен сверху – это сигнал к покупке. В 8 день кривая пересекает график цен снизу – это сигнал к продаже. В 9 день кривая пересекает график цен сверху – это сигнал к покупке. В 10 день кривая пересекает график цен снизу – это сигнал к продаже.
Рис. 12. Биржевая диаграмма исходных данных
В 1, 4, 5, 8, 10 день цена закрытия тяготеет к минимальной цене, это говорит о снижении цен. Во 2, 3, 6, 7, 9 дни цена закрытия тяготеет к максимальной цене, это говорит о росте цен.
Рис. 13. График момента
В 6, 7, 8 дни график момента расположен ниже линии нулевого уровня. Рекомендуется продажа финансового инструмента.
В 9, 10 дни график момента расположен выше линии нулевого уровня. Рекомендуется покупка финансового инструмента.
В 9 день график момента пересекает линию нулевого уровня – это сигнал разворота тренда. Так как пересечение снизу вверх – это сигнал к покупке.
Рис. 14. График скорости изменения цен
В 6, 7, 8 дни график скорости изменения цен расположен ниже уровня 100%. Рекомендуется продажа финансового инструмента.
В 9, 10 дни график скорости изменения цен расположен выше уровня 100%. Рекомендуется покупка финансового инструмента.
В 9 день график скорости изменения цен пересекает уровень 100% – это сигнал разворота тренда. Так как пересечение снизу вверх – это сигнал к покупке.
Рис. 15. График индекса относительной силы
С 6 по 10 день график индекса относительной силы находится в нейтральной зоне (от 25 до 75). Рекомендуется проводить финансовые операции в соответствии с сигналами других индикаторов.
Рис. 16. Стохастические линии
График
К% показывает, что в 5 день рекомендуется
прекратить финансовые операции (график
находится в критической зоне
«перекупленности»). В 6 день получен
сигнал разворота тренда (график вышел
из критической зоны), рекомендуется
начать продажу финансового
График R% является зеркальным отражением графика К%. Выводы по этим графикам полностью совпадают.
График D% с 7 по 10 день находится в нейтральной зоне. Это подтверждает то, что следует проводить финансовые операции в соответствии с сигналами других индикаторов.
Выполнить различные коммерческие расчеты, используя данные, приведенные в таблице. В условии задачи значения параметров введены в виде переменных. Например, S означает некоторую сумму средств в рублях, Тлет - время в годах, i - ставку в процентах и т.д. По номерам переменных из таблицы необходимо выбрать соответствующие численные значения параметров и выполнить расчеты.
3.1. Банк выдал ссуду, размером S руб. Дата выдачи ссуды - Tн, возврата - Tк. День выдачи и день возврата считать за 1 день. Проценты рассчитываются по простой процентной ставке i % годовых.
Найти:
3.1.1) точные проценты с точным числом дней ссуды;
3.1.2) обыкновенные проценты с точным числом дней ссуды;
3.1.3) обыкновенные
проценты с приближенным
3.2. Через Tдн дней после подписания договора должник уплатит S руб. Кредит выдан под i % годовых (проценты обыкновенные). Какова первоначальная сумма и дисконт?
3.3. Через Tдн дней предприятие должно получить по векселю S руб. Банк приобрел этот вексель с дисконтом. Банк учел вексель по учетной ставке i % годовых (год равен 360 дням). Определить полученную предприятием сумму и дисконт.
3.4. В кредитном договоре на суммуS руб. и сроком на Tлет лет, зафиксирована ставка сложных процентов, равная i % годовых. Определить наращенную сумму.
3.5. Ссуда размером S руб. предоставлена на Тлет. Проценты сложные, ставка - i% годовых. Проценты начисляются m раз в году. Вычислить наращенную сумму.
3.6. Вычислить эффективную ставку процента, если банк начисляет проценты m раз в году, исходя из номинальной ставки i % годовых.
3.7. Определить, какой должна быть номинальная ставка при начислении процентов m раз в году, чтобы обеспечить аффективную ставку i % годовых.
3.8. Через Тлет предприятию будет выплачена сумма S руб. Определить ее современную стоимость при условии, что применяется сложная процентная ставка i % годовых.
3.9. Через Tлет по векселю должна быть выплачена сумма S руб. Банк учел вексель по сложной учетной ставке i % годовых. Определить дисконт.
3.10. В течение Тлет лет на расчетный счет в конце каждого года поступает по S руб., на которые m раз в году начисляются проценты по сложной годовой ставке i %. Определить сумму на расчетном счете к концу указанного срока.
Сумма |
Дата начальная |
Дата конечная |
Время в днях |
Время в годах |
Ставка |
Число начислений |
S |
Tн |
Тк |
Тдн |
Тлет |
i |
m |
3 500 000 |
11.01.2002 |
19.03.2002 |
90 |
5 |
40 |
4 |
Решение:
Расчеты отражены на рис. 17-18.
По итогам расчетов можно сделать следующие выводы.
3.1.1 Точные проценты с точным числом дней ссуды = 256986,30 руб.
3.1.2 Обыкновенные проценты с точным числом дней ссуды = 260555,56 руб.
3.1.3 Обыкновенные проценты с приближенным числом дней ссуды = 264444,44 руб.
3.2. Первоначальная сумма = 3181818,18 руб.
Дисконт = 318181,82 руб.
3.3 Полученная предприятием сумма = 3150000 руб.
Дисконт = 350000 руб.
Рис. 17. Формулы для расчетов
3.4. Наращенная сумма = 18823840 руб.
3.5. Наращенная сумма = 23546249,82 руб.
3.6. Эффективная ставка процента = 46,410 %.
3.7. Номинальная ставка = 35,103 %.
3.8. Современная стоимость = 650770,51 руб.
3.9. Дисконт = 3227840 руб.
3.10. Сумма на расчетном счете к концу указанного срока = 43193815,61 руб.
Информация о работе Контрольная работа по "Финансовой математике"