Автор работы: Пользователь скрыл имя, 19 Марта 2014 в 23:18, реферат
Волоко́нно-опти́ческая связь — вид проводной электросвязи, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического (ближнего инфракрасного) диапазона, а в качестве направляющих систем — волоконно-оптические кабели.
Волоко́нно-опти́ческая связь — вид проводной электросвязи, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического (ближнего инфракрасного) диапазона, а в качестве направляющих систем — волоконно-оптические кабели. Благодаря высокой несущей частоте и широким возможностям мультиплексирования, пропускная способность волоконно-оптических линий многократно превышает пропускную способность всех других систем связи и может измеряться терабитами в секунду. Малое затухание света в оптическом волокне позволяет применять волоконно-оптическую связь на значительных расстояниях без использования усилителей. Волоконно-оптическая связь свободна от электромагнитных помех и труднодоступна для несанкционированного использования — незаметно перехватить сигнал, передаваемый по оптическому кабелю, технически крайне сложно.
Оптический кабель может передавать данные с очень высокой скоростью. Пропускная способность такой оптической системы будет измеряться в Тбит/с.
Оптоволокно обладает отличными характеристиками передачи, большой емкостью передаваемых данных, потенциалом для дальнейшего увеличения пропускной способности и прекрасной электромагнитной совместимостью ЭМС.
Оптический световод состоит из сердечника и защитного внешнего слоя (оболочки). Оболочка служит в качестве отражающего слоя, с помощью которого световой сигнал удерживается внутри сердечника.
Оптический кабель может состоять только из одного оптического световода, но на практике он содержит множество оптических волокон. Волокна уложены в мягкий защитный материал (буфер), а он, в свою очередь, защищен жестким покрытием.
В большинстве оптических волокон диаметр оболочки составляет 125 мкм. Размер сердечника в распространенных типах оптических волокон составляет 50 мкм и 62,5 мкм для многомодового оптоволокна и 8 мкм для одномодового оптоволокна. Вобщем–то, световоды характеризуются соотношением размеров сердечника и оболочки, например 50/125, 62,5/125 или 8/125.
Сигналы оптического излучения передаются через оптоволокно и принимаются электронным оборудованием на другом конце кабеля. Такое оборудование называется оконечным оборудованием волоконно–оптической линии связи. Оно преобразует электрические сигналы в оптические, и наоборот.
Одно из преимуществ оптоволокна состоит в том, что пропускную способность сети на базе оптоволокна можно увеличить простой заменой оконечного оборудования на обоих концах волоконно–оптической линии связи.
Многомодовое и одномодовое оптоволокно отличаются способом распространения оптического излучения в волокне. Самое простое отличие заключается в размерах сердечника световода. Более конкретно, многомодовое волокно может передавать несколько мод (независимых световых путей) с различными длинами волн или фазами, однако больший диаметр сердечника приводит к тому, что вероятность отражения света от внешней поверхности сердечника повышается, а это приводит к модовой дисперсии (рассеиванию) и, как следствие, уменьшению пропускной способности и расстояния между повторителями сигнала.
Грубо говоря, пропускная способность многомодового оптоволокна составляет около 2,5 Гбит/с. Одномодовое оптоволокно передает световую энергию только одной моды. Однако меньший диаметр сердечника такого оптоволокна означает и меньшую модовую дисперсию. В результате сигнал может передаваться на большие расстояния без повторителей. Проблема заключается в том, что само одномодовое оптоволокно и электронные компоненты для передачи и приема оптического сигнала стоят дороже.
Одномодовое волокно имеет очень тонкий сердечник (диаметром 10 мкм и менее). Из–за малого диаметра сердечника световой пучок отражается от его поверхности реже, а это приводит к меньшей модовой дисперсии. Термин «одномодовый» означает, что такой тонкий сердечник может передавать только один световой несущий сигнал (или моду). Пропускная способность одномодового оптоволокна превышает 10 Гбит/с.
В 2009 году лаборатории Белла посредством мультиплексирования 155 каналов по 100 Гбит/с удалось передать данные со скоростью 15,5 Тбит/с на расстояние 7000 км
Волоконно–оптическая кабельная проводка, как и проводка UTP, имеет физическую и логическую топологии. Физическая топология — это схема проводки оптического кабеля между зданиями и внутри каждого из них для создания основы гибкой логической топологии.
Одним из лучших, если не самым лучшим, источником практической информации по физической проводке кабелей является руководство BICSI Telecommunications Distribution Method (TDM) за 1995 год. TDM представляет основу для формирования топологии сети с проводкой из оптического кабеля в соответствии с принятыми стандартами.
TDM, американский стандарт на Телекоммуникационную проводку для коммерческих зданий (ANSI/TIA/EIA–568A) и международный стандарт на Универсальную кабельную систему для зданий и территорий заказчика ISO/IEC IS 11801 рекомендуют физическую топологию типа «звезда» для соединения между собой волоконно–оптических магистралей как внутри, так и вне зданий.
Физическая топология во многом определяется взаимным расположением и внутренней планировкой зданий, а также наличием готовой кабельной канализации. Несмотря на то что иерархическая звездообразная топология обеспечивает наибольшую гибкость, она может оказаться невыгодной по чисто финансовым соображениям. Но даже физическое кольцо лучше, чем полное отсутствие оптической кабельной магистрали.
Число оптических световодов в кабеле определяет число оптоволокон. К сожалению, ни один опубликованный стандарт не определяет, сколько оптоволокон должно быть в кабеле.
Поэтому проектировщик должен сам решить, сколько оптоволокон будет в каждом кабеле. При выборе оптоволоконного кабеля помните, что производители оптического кабеля, как правило, изготовляют его с числом волокон кратным 6 или 12.
Общее правило таково: волокон в кабеле между зданиями должно быть столько, сколько позволяет ваш бюджет. Но, все же, каков практический минимум для числа оптических волокон?
Подсчитайте, сколько волокон вам нужно для начальной поддержки сетевых приложений, а затем умножьте это число на два, и вы получите необходимый минимум. Например, если вы собираетесь задействовать в кабеле между двумя зданиями 31 волокно, то надо округлить это число до ближайшего кратного шести (в большую сторону), что равняется 36. В нашей ситуации потребуется кабель, по крайней мере, с 72 волокнами.
Если вы привыкли к работе с кабелями UTP, то 72 волокна могут показаться вам слишком большим числом. Однако помните, что цена кабеля с 72 волокнами отнюдь не вдвое больше цены кабеля с 36 волокнами. В действительности, он стоит всего лишь на 20% дороже кабеля с 32 волокнами. Кроме того, помните, что затраты и сложность прокладки кабеля с 72 волокнами будут практически такими же, как и у кабеля с 36 волокнами, а дополнительные волокна могут вполне пригодиться вам в будущем.
Спецификаций на оптоволокно существует сотни, они охватывают все возможные аспекты » от физических размеров до пропускной способности, от прочности на разрыв до цвета материала защитной оболочки. Защитная оболочка (буфер) предохраняет оптоволокно от повреждения, и она обычно маркируется разным цветом из соображений простоты.
Практические параметры, которые необходимо знать, — это длина, диаметр, окно прозрачности (длина волны), затухание, пропускная способность и качество оптоволокна.
В спецификациях на оптоволокно длина указывается в метрах и километрах. При получении заказанного оптического кабеля проверьте, чтобы поставляемый кабель имел требуемую длину. Кроме того, на случай, скажем, перестановки стойки с оборудованием в пределах комнаты приобретение дополнительной катушки кабеля для комнаты с оконечным оборудованием вполне оправдано.
Многомодовое оптоволокно может быть нескольких диаметров, но наиболее распространено из них оптоволокно с соотношением диаметров сердечника к оболочке 62,5 на 125 мкм. Именно это многомодовое оптоволокно будет использоваться во всех примерах данной статьи. Размер 65,2/125 называется в спецификации ANSI/TIA/EIA–568A стандартным для проводки в зданиях.
Одномодовое оптоволокно имеет один стандартный размер — 9 мкм (плюс–минус один мкм). Помните, если ваше оконечное оборудование волоконно–оптических линий связи предусматривает применение оптоволокна специального диаметра и вы собираетесь и дальше его использовать, то, скорее всего, оно не будет работать с оптоволокном обычного диаметра.
Рис.1 Одномодовое и многомодовое
оптическое волокно
Окно прозрачности — это длина световой волны излучения, которую волокно передает с наименьшим затуханием. Длина волны измеряется обычно в нанометрах (нм). Самые распространенные значения длины волны — 850, 1300, 1310 и 1550 нм. Большинство волокон имеет два окна — т. е. оптическое излучение может передаваться на двух длинах волн. Для многомодовых оптических волокон это 850 и 1310 нм, а для одномодовых — 1310 и 1550 нм.
Затухание характеризует величину потерь сигнала и действует аналогично сопротивлению в медном кабеле. Затухание измеряется в децибелах на километр (дБ/км). Типовое затухание для одномодового волокна составляет 0,5 дБ/км при длине волны в 1310 нм и 0,4 дБ/км при 1550 нм. Для многомодового волокна эти величины равны 3,0 дБ/км при 850 нм и 1,5 дБ/км при 1300 нм. Благодаря тому, что оно тоньше, одномодовое волокно позволяет передавать сигнал с тем же затуханием на большие расстояния, чем аналогичное многомодовое волокно.
Спецификацию на кабели надо составлять, исходя из максимально допустимого затухания (т. е. наихудшего случая), а не типовой величины потерь.
Так, максимальная величина затухания при указанных длинах волн составляет для одномодового 1,0/0,75 дБ/км и 3,75/1,5 дБ/км для многомодового. Чем шире окно прозрачности, т. е. чем больше длина волны оптического излучения, тем меньше затухание для кабелей обоих типов.
Спецификация затухания может выглядеть, например, так:
максимальное затухание одномодового волокна должно быть 0,5 дБ/км при окне 1310 нм или максимальное затухание многомодового волокна должно быть 3,75/1,5 дБ/км для окна прозрачности 850/1300 нм;
скорость передачи данных, передаваемых по оптоволокну, прямо пропорциональна затуханию. Таким образом, чем меньше затухание (дБ/км), тем шире граничная частота полосы пропускания в МГц. Минимально допустимая граничная частота полосы пропускания для многомодового волокна должна быть 160/500 МГц при длине волны 850/1300 нм и максимальном затухании 3,75/1,5 дБ/км. Эта спецификация отвечает требованиям FDDI, Ethernet и Token Ring.
Волокно может быть трех различных типов в зависимости от необходимых характеристик оптической передачи: стандартное, высококачественное и премиумное. Волокно более высокого качества используется обычно для удовлетворения более жестких требований к протяженности канала в СКС и затуханию сигнала.
Ввод оптического излучения в оптоволокно может осуществляться различными способами.
Рис.2 Лазерный диод и светодиод
Ввод излучения для одномодового оптоволокна осуществляется узким лучом точно вдоль оси сердечника оптоволокна. В качестве оптического источника излучения здесь применим только лазерный диод.
Для многомодовых волокон может использоваться и более дешевый светодиодный излучатель, имеющий более широкую диаграмму направленности излучения.
Возможно применение и новых дешевых излучателей, но имеющих более узкую диаграмму направленности с большой интенсивностью излучения. Таким источником оптического излучения является VCSEL (Vertical Cavity Surface Emitting Laser) — Лазер поверхностного излучения с вертикальным объемным резонатором, работающий на длине волны 850 нм и 1300 нм. Применение данного источника излучения будет особенно экономически выгодным на длине волны 850 нм.
Рис. 3 Лазер поверхностного
излучения
с вертикальным объемным
резонатором (VCSEL)
Достоинствами VCSEL являются:
Технологичность производства излучателя;
Снижение цены по сравнению с лазерным диодом;
Узконаправленный и интенсивный спектр оптического излучения.
Все эти характеристики излучателя являются чрезвычайно важными при расчете экономической эффективности применения СКС, работающих на оптоволокне.
Линейные системы, строящиеся на основе оптоволокна позволили значительно повысить скорость передачи информации и увеличить длину участка прокладки оптоволокна без промежуточной регенерации.
Практический опыт многих лет создавал иллюзию, что существующие многомодовые волокна могут обеспечить почти неограниченную полосу пропускания в магистралях локальных вычислительных сетей, позволяя использовать все более высокую скорость передачи данных.
Однако проведенные недавно испытания показали, что традиционные многомодовые магистрали просто не в состоянии были обеспечить требуемую полосу пропускания на расстоянии свыше 275 м.
Появление нового поколения оптических излучателей типа VCSEL, работающих на длине волны 850 нм, заставляет выбрать многомодовый оптоволоконный кабель, оптимизированный для лазерной накачки, чтобы получить требуемую полосу пропускания на больших расстояниях. Кабельные решения GIGAlite II компании Nexans, рекомендованные Сонет Текнолоджис — это выбор сегодняшнего дня; они предлагаются с оптоволокном стандарта 50/125 мкм и 62,5/125 мкм.
На сегодняшний день — это, пожалуй, единственный оптоволоконный кабель, который в состоянии обеспечить требуемую полосу пропускания информационного сигнала на больших расстояниях.
В ходе разработки технологии Gigabit Ethernet было обнаружено искажение сигнала с длиной волны 1300 нм (1000Base–LX) на некоторых многомодовых кабелях низкого качества, имеющих физический дефект в самом центре оптоволокна.
Проведенные испытания показали, что можно избежать искажения сигнала, используя специальные соединительные шнуры, получившие название «соединительный шнур с равновесным модовым распределением», которые обеспечивают смещение при лазерной накачке в многомодовый кабель.
Высокое качество оптоволокна в кабелях GIGAlite II позволяет обойтись без использования этих дорогостоящих специальных соединительных шнуров.
Информация о работе Физические каналы передачи данных: оптоволокно