Интелектуальные средства измерения

Автор работы: Пользователь скрыл имя, 14 Апреля 2014 в 14:21, реферат

Описание работы

Под интеллектуальными по отношению к датчикам, преобра-
зователям, измерительным приборам, исполнительным механиз-
мам, микроконтроллерам понимают устройства, удаленные от
центра управления (операторской, диспетчерской), с которым они
связаны информационными каналами

Файлы: 1 файл

Интелектуальные средства измерений.docx

— 29.78 Кб (Скачать файл)

Понятие:

Под интеллектуальными по отношению к датчикам, преобра-

зователям, измерительным приборам, исполнительным механиз-

мам, микроконтроллерам понимают устройства, удаленные от

центра управления (операторской, диспетчерской), с которым они

связаны информационными каналами. Этот термин употребля-

ется в том смысле, что они обладают неким «интеллектом», спо-

собным обрабатывать сигнал, перестраивать свои параметры или

алгоритм своей работы, работать с электронными таблицами и

выполнять ряд дополнительных функций по команде с внешнего

устройства или адаптивно в соответствии с меняющимися усло-

виями. Фактически интеллектуальным сейчас называют любое

устройство, имеющее в своем составе микропроцессор.

Интеллектуальное измерительное средство, или систе-

ма, — это информационно-вычислительная система (ИВС) с

интеллектуальной поддержкой при решении задач без участия

оператора — лица, принимающего решение (ЛПР).

Классификация:

Интеллектуальные средства измерений классифицируют по

следующим признакам:

• предметная область (ПО) (информационно-измерительная

техника, автоматика, медицина, геология, авиация и т. д.);

• модели представления данных (продукционные, фреймовые

и др.);

• тип вывода (прямого или обратного);

• тип ЭВМ (малые, средние, большие).

Анализ принципов построения и типовых структур ИнСИ про-

водится на основе представлений о характере их функциониро-

вания, корреспондирующихся с приняты ми принципами функ-

ционирования интеллектуальных ЭВМ, экспертных систем и др.

 

Цикл работы ИнСИ состоит из четырех этапов:

 

На первом этапе ИнСИ воспринимает исходную информацию

о характере измерительной задачи, об объектах и условиях изме-

рений, предъявляемых требованиях и наложенных ограничениях.

Вид и характер исходной инфор мации должен обеспечивать воз-

можность идентификации из мерительной ситуации, определяемой

свойствами объекта из мерений, условиями измерений, предъяв-

ленными требованиями и наложенными ограничениями, и уста-

новления множества алгоритмов измерений, реализация которых

воз можна на основе входящих в ИнСИ аппаратных и программ-

ных средств.

На втором этапе цикла работы ИнСИ выполняются иденти-

фикация ситуации и установление множества алгоритмов изме-

рений.

Третий этап цикла работы ИнСИ заключается в выборе наи-

лучшего алгоритма измерений из числа возможных. Поскольку

правило выбора этого алгоритма с неизбежностью связано с уста-

новлением характеристик точ ности результатов измерений при

использовании сравнивае мых алгоритмов, измерительные знания

должны включать в себя все сведения, необходимые для выпол-

нения соответству ющих процедур — расчетов, имитационного

моделирования, метрологических экспериментов или их комби-

наций.

После выбора алгоритма измерений выполняется заключитель-

ный, четвертый этап работы ИнСИ — проведение необходимых

измерений.

Методы и средства интеллектуального анализа данных

Интеллектуальный анализ данных — одно из новых направлений искусственного интеллекта. Этот термин является кратким и весьма неточным переводом с английского языка терминов Data Mining и Knowledge Discovery in Databases (DM&KDD). Более точный перевод — «добыча данных» и «выявление знаний в базах данных».

В технологиях DM&KDD используются различные математические методы и алгоритмы: классификация, кластеризация, регрессия, прогнозирование временных рядов, ассоциация, последовательность.

Классификация — инструмент обобщения. Она позволяет перейти от рассмотрения единичных объектов к обобщенным понятиям, которые характеризуют некоторые совокупности объектов и являются достаточными для распознавания объектов, принадлежащих этим совокупностям (классам). Суть процесса формирования понятий заключается в нахождении закономерностей, свойственных классам. Для описания объектов используются множества различных признаков (атрибутов), Проблема формирования понятий по признаковым описаниям была сформулирована М. М. Бонгартом. Ее решение базируется на применении двух основных процедур: обучения и проверки. В процедурах обучения строится классифицирующее правило на основе обработки обучающего множества объектов. Процедура проверки (экзамена) состоит в использовании полученного классифицирующего правила для распознавания объектов из новой (экзаменационной) выборки. Если результаты проверки признаны удовлетворительными, то процесс обучения заканчивается, в противном случае классифицирующее правило уточняется в процессе повторного обучения.

Кластеризация — это распределение информации (записей) из БД по группам (кластерам) или сегментам с одновременным определением этих групп. В отличие от классификации здесь для проведения анализа не требуется предварительного задания классов.

Регрессионный анализ используется в том случае, если отношения между атрибутами объектов в БД выражены количественными оценками. Построенные уравнения регрессии позволяют вычислять значения зависимых атрибутов по заданным значениям независимых признаков.

Прогнозирование временных рядов является инструментом для определения тенденций изменения атрибутов рассматриваемых объектов с течением времени. Анализ поведения временных рядов позволяет прогнозировать значения исследуемых характеристик.

Последовательность — это метод выявления ассоциаций во времени. В данном случае определяются правила, которые описывают последовательное появление определенных групп событий. Такие правила необходимы для построения сценариев. Кроме того, их можно использовать, например, для формирования типичного набора предшествующих продаж, которые могут повлечь за собой последующие продажи конкретного товара.

 

К интеллектуальным средствам DM&KDD относятся нейронные сети, деревья решений, индуктивные выводы, методы рассуждения по аналогии, нечеткие логические выводы, генетические алгоритмы, алгоритмы определения ассоциаций и последовательностей, анализ с избирательным действием, логическая регрессия, эволюционное программирование, визуализация данных. Иногда перечисленные методы применяются в различных комбинациях.

Нейронные сети относятся к классу нелинейных адаптивных систем с архитектурой, условно имитирующей нервную ткань, состоящую из нейронов. Математическая модель нейрона представляет собой некий универсальный нелинейный элемент, допускающий возможность изменения и настройки его характеристик. Подробнее вопросы построения моделей нейронных сетей рассмотрены в главе 5. Нейронные сети широко применяются для решения задач классификации. Построенную сеть сначала нужно «обучить» на примерах, для которых известны значения исходных данных и результаты. Процесс «обучения» сети заключается в подборе весов межнейронных связей и модификации внутренних параметров активационной функции нейронов. «Обученная» сеть способна классифицировать новые объекты (или решать другие примеры), однако правила классификации остаются не известными пользователю.

Деревья решений — метод структурирования задачи в виде древовидного графа, вершины которого соответствуют продукционным правилам, позволяющим классифицировать данные или осуществлять анализ последствий решений. Этот метод дает наглядное представление о системе классифицирующих правил, если их не очень много. Простые задачи решаются с помощью этого метода гораздо быстрее, чем с использованием нейронных сетей. Для сложных проблем и для некоторых типов данных деревья решений могут оказаться неприемлемыми. Кроме того, для этого метода характерна проблема значимости. Одним из последствий иерархической кластеризации данных является то, что для многих частных случаев отсутствует достаточное число обучающих примеров, в связи с чем классификацию нельзя считать надежной. Методы деревьев решений реализованы во многих программных средствах, а именно: С5.0 (RuleQuest, Австралия), Clementine (Integral Solutions, Великобритания), SIPINA (University of Lyon, Франция), IDIS (Information Discovery, США).

Индуктивные выводы позволяют получить обобщения фактов, хранящихся в БД. В процессе индуктивного обучения может участвовать специалист, поставляющий гипотезы. Такой способ называют обучением с учителем. Поиск правил обобщения может осуществляться без учителя путем автоматической генерации гипотез. В современных программных средствах, как правило, сочетаются оба способа, а для проверки гипотез используются статистические методы. Примером системы с применением индуктивных выводов является XpertRule Miner, разработанная фирмой Attar Software Ltd. (Великобритания).

Рассуждения на основе аналогичных случаев (Case-based reasoning — CBR) основаны на поиске в БД ситуаций, описания которых сходны по ряду признаков с заданной ситуацией. Принцип аналогии позволяет предполагать, что результаты похожих ситуаций также будут близки между собой. Недостаток этого подхода заключается в том, что здесь не создается каких-либо моделей или правил, обобщающих предыдущий опыт. Кроме того, надежность выводимых результатов зависит от полноты описания ситуаций, как и в процессах индуктивного вывода. Примерами систем, использующих CBR, являются: KATE Tools (Acknosoft, Франция), Pattern Recognition Workbench (Unica, США).

Нечеткая логика применяется для обработки данных с размытыми значениями истинности, которые могут быть представлены разнообразными лингвистическими переменными. Нечеткое представление знаний широко применяется в системах с логическими выводами (дедуктивными, индуктивными, абдуктивными) для решения задач классификации и прогнозирования, например в системе XpertRule Miner (Attar Software Ltd., Великобритания), а также в AIS и NeuFuz и др. .

Генетические алгоритмы входят в инструментарий DM&KDD как мощное средство решения комбинаторных и оптимизационных задач. Они часто применяются в сочетании с нейронными сетями (см. главу 6). В задачах извлечения знаний применение генетических алгоритмов сопряжено со сложностью оценки статистической значимости полученных решений и с трудностями построения критериев отбора удачных решений. Представителем пакетов из этой категории является GeneHunter фирмы Ward Systems Group. Генетические алгоритмы используются также в пакете XpertRule Miner и др.

Логическая (логистическая) регрессия используется для предсказания вероятности появления того или иного значения дискретной целевой переменной. Дискретная зависимая (целевая) переменная не может быть смоделирована методами обычной многофакторной линейной регрессии. Тем не менее вероятность результата может быть представлена как функция входных переменных, что позволяет получить количественные оценки влияния этих параметров на зависимую переменную. Полученные вероятности могут использоваться и для оценки шансов. Логическая регрессия — это, с одной стороны, инструмент классификации, который используется для предсказания значений категориальных переменных, с другой стороны — регрессионный инструмент, позволяющий оценить степень влияния входных факторов на результат.

Эволюционное программирование — самая новая и наиболее перспективная ветвь DM&KDD. Суть метода заключается в том, что гипотезы о форме зависимости целевой переменной от других переменных формулируются компьютерной системой в виде программ на определенном внутреннем языке программирования. Если это универсальный язык, то теоретически он способен выразить зависимости произвольной формы. Процесс построения таких программ организован как эволюция в мире программ. Когда система находит программу, достаточно точно выражающую искомую зависимость, она начинает вносить в нее небольшие модификации и отбирает среди построенных дочерних программ те, которые являются наиболее точными. Затем найденные зависимости переводятся с внутреннего языка системы на понятный пользователю язык (математические формулы, таблицы и т.п.). При этом активно используются средства визуализации. Методы эволюционного программирования реализованы в системе PolyAnalyst (Unica, США).

Примеры:

В современных средствах DM&KDD часто используются комбинированные методы. Например, продукт компании SAS Enterprise Miner 3.0 содержит модуль автоматического построения результирующей гибридной модели, определенной на множестве моделей, которые предварительно были созданы различными методами: деревьев решений, нейронных сетей, обобщенной многофакторной регрессии. Программная система Darwin, разработанная компанией Thinking Machines, позволяет не только строить модели на основе нейронных сетей или деревьев решений, но также использовать визуализацию и системы рассуждений по аналогии. Кроме того, этот продукт включает своеобразный генетический алгоритм для оптимизации моделей. Активно работает в области интеллектуального анализа данных компания IBM. Многие из полученных в ее лабораториях результатов нашли применение в выпускаемых инструментальных пакетах, которые можно отнести к четырем из пяти стандартных типов приложений «глубокой переработки» информации: классификации, кластеризации, выявлению последовательностей и ассоциаций.

 

Нейрокомпьютер

семейства Mark фирмы TRW (первая реализация персептрона, разработанная Розенблатом, называлась Mark I). Модель Mark III фирмы TRW представляют собой рабочую станцию, содержащую до 15 процессоров семейства Motorola 68000 с математическими сопроцессорами. Все процессоры объединены шиной VME. Архитектура системы, поддерживающая до 65 000 виртуальных процессорных элементов с более чем 1 млн. настраиваемых соединений, позволяет обрабатывать до 450 тыс. межсоединений в секунду. Mark IV - это однопроцессорный суперкомпьютер с конвейерной архитектурой. Он поддерживает до 236 тыс. виртуальных процессорных элементов, что позволяет обрабатывать до 5 млн. межсоединений в секунду. Компьютеры семейства Mark имеют общую программную оболочку ANSE (Artificial Neural System Environment), обеспечивающую программную совместимость моделей. Другой интересной моделью является нейрокомпьютер NETSIM, созданный фирмой Texas Instruments на базе разработок Кембриджского университета. 

Информация о работе Интелектуальные средства измерения