Искусственный интеллект

Автор работы: Пользователь скрыл имя, 04 Апреля 2013 в 08:48, автореферат

Описание работы

Иску́сственный интелле́кт (ИИ, англ. Artificial intelligence, AI) — наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

Содержание работы

• 1 Происхождение и понимание термина «искусственный интеллект»
• 2 Предпосылки развития науки искусственного интеллекта
o 2.1 История развития искусственного интеллекта в СССР и России
• 3 Подходы и направления
o 3.1 Подходы к пониманию проблемы
3.1.1 Тест Тьюринга и интуитивный подход
3.1.2 Символьный подход
3.1.3 Логический подход
3.1.4 Агентно-ориентированный подход
3.1.5 Гибридный подход
3.2 Модели и методы исследований
3.2.1 Символьное моделирование мыслительных процессов
3.2.2 Работа с естественными языками
3.2.3 Представление и использование знаний
3.2.4 Машинное обучение
3.2.5 Биологическое моделирование искусственного интеллекта
3.2.6 Робототехника
3.2.7 Машинное творчество
3.2.8 Другие области исследований
• 4 Современный искусственный интеллект
o 4.1 Применение
• 5 Связь с другими науками и явлениями культуры
o 5.1 Компьютерные технологии и кибернетика
o 5.2 Психология и когнитология
o 5.3 Философия
 5.3.1 Вопросы создания ИИ
 5.3.2 Этика
o 5.4 Религия
o 5.5 Научная фантастика
o 5.6 Фильмы
• 6 См. также
• 7 Примечания
• 8 Литература
• 9 Ссылки

Файлы: 1 файл

ИИ.docx

— 147.26 Кб (Скачать файл)

Основная особенность  символьных вычислений — создание новых правил в процессе выполнения программы. Тогда как возможности не интеллектуальных систем завершаются как раз перед способностью хотя бы обозначать вновь возникающие трудности. Тем более эти трудности не решаются и наконец компьютер не совершенствует такие способности самостоятельно.

Недостатком символьного  подхода является то, что такие  открытые возможности воспринимаются не подготовленными людьми как отсутствие инструментов. Эту, скорее культурную проблему, отчасти решает логическое программирование.

Логический подход

Основная статья: Логическое программирование

Логический подход к созданию систем искусственного интеллекта направлен  на создание экспертных систем с логическими  моделями баз знаний с использованием языка предикатов.

Учебной моделью систем искусственного интеллекта в 1980-х годах был принят язык и система логического программирования Пролог. Базы знаний, записанные на языке Пролог, представляют наборы фактов и правил логического вывода, записанных на языке логических предикатов.

Логическая модель баз  знаний позволяет записывать не только конкретные сведения и данные в форме  фактов на языке Пролог, но и обобщённые сведения с помощью правил и процедур логического вывода, и в том  числе логических правил определения  понятий, выражающих определённые знания как конкретные и обобщённые сведения.

В целом исследования проблем  искусственного интеллекта в рамках логического подхода к проектированию баз знаний и экспертных систем направлены на создание, развитие и эксплуатацию интеллектуальных информационных систем, включая вопросы обучения студентов и школьников, а также подготовки пользователей и разработчиков таких интеллектуальных информационных систем.

Агентно-ориентированный подход

Основная статья: Агентно-ориентированный подход

Последний подход, развиваемый  с начала 1990-х годов, называется агентно-ориентированным подходом, или подходом, основанным на использовании интеллектуальных (рациональных) агентов. Согласно этому подходу, интеллект — это вычислительная часть (грубо говоря, планирование) способности достигать поставленных перед интеллектуальной машиной целей. Сама такая машина будет интеллектуальным агентом, воспринимающим окружающий его мир с помощью датчиков, и способной воздействовать на объекты в окружающей среде с помощью исполнительных механизмов.

Этот подход акцентирует  внимание на тех методах и алгоритмах, которые помогут интеллектуальному агенту выживать в окружающей среде при выполнении его задачи. Так, здесь значительно тщательнее изучаются алгоритмы поиска пути и принятия решений.

Гибридный подход

Основная статья: Гибридный подход

Гибридный подход предполагает, что только синергетическая комбинация нейронных и символьных моделей достигает полного спектра когнитивных и вычислительных возможностей. Например, экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения. Сторонники данного подхода считают, что гибридные информационные системы будут значительно более сильными, чем сумма различных концепций по отдельности.

Модели и методы исследований

Символьное моделирование  мыслительных процессов

Основная статья: Моделирование рассуждений

Анализируя историю ИИ, можно выделить такое обширное направление  как моделирование рассуждений. Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем, на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована, то есть переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теорем, принятие решений и теория игр, планирование и диспетчеризация, прогнозирование.

Работа с естественными  языками

Основная статья: Обработка естественного языка

Немаловажным направлением является обработка естественного языка[13], в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В рамках этого направления ставится цель такой обработки естественного языка, которая была бы в состоянии приобрести знание самостоятельно, читая существующий текст, доступный по Интернету. Некоторые прямые применения обработки естественного языка включают информационный поиск (в том числе, глубокий анализ текста) и машинный перевод[14].

Представление и  использование знаний

Основная статья: Инженерия знаний

Основная статья: Представление знаний

Направление инженерия знаний объединяет задачи получения знаний из простой информации, их систематизации и использования. Это направление исторически связано с созданием экспертных систем — программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

Производство знаний из данных — одна из базовых проблем интеллектуального анализа данных. Существуют различные подходы к решению этой проблемы, в том числе — на основе нейросетевой технологии[15], использующие процедуры вербализации нейронных сетей.

Машинное обучение

Основная статья: Машинное обучение

Проблематика машинного обучения[16] касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Это направление было центральным с самого начала развития ИИ[17]. В 1956 году, на Дартмундской летней конференции, Рей Соломонофф написал отчёт о вероятностной машине, обучающейся без учителя, назвав её: «Индуктивная машина вывода»[18].

Обучение  без учителя — позволяет распознать образы во входном потоке. Обучение с учителем включает также классификацию и регрессионный анализ. Классификация используется, чтобы определить, к какой категории принадлежит образ. Регрессионный анализ используется, чтобы в рядах числовых примеров входа/выхода и обнаружить непрерывную функцию, на основании которой можно было бы прогнозировать выход. При обучении агент вознаграждается за хорошие ответы и наказывается за плохие. Они могут быть проанализированы с точки зрения теории решений, используя такие понятия как полезность. Математический анализ машинных алгоритмов изучения — это раздел теоретической информатики, известный как вычислительная теория обучения (англ. Computational learning theory).

К области машинного обучения относится большой класс задач  на распознавание образов. Например, это распознавание символов, рукописного текста, речи, анализ текстов. Многие задачи успешно решаются с помощью биологического моделирования (см. след. пункт). Особо стоит упомянуть компьютерное зрение, которое связано ещё и с робототехникой.

Биологическое моделирование  искусственного интеллекта

Основная статья: Квазибиологическая парадигма

 
Отличается от понимания искусственного интеллекта по Джону Маккарти, когда исходят из положения о том, что искусственные системы не обязаны повторять в своей структуре и функционировании структуру и протекающие в ней процессы, присущие биологическим системам. Сторонники данного подхода считают, что феномены человеческого поведения, его способность к обучению и адаптации есть следствие именно биологической структуры и особенностей её функционирования.

Сюда можно отнести  несколько направлений. Нейронные сети используются для решения нечётких и сложных проблем, таких как распознавание геометрических фигур или кластеризация объектов. Генетический подход основан на идее, что некий алгоритм может стать более эффективным, если позаимствует лучшие характеристики у других алгоритмов («родителей»). Относительно новый подход, где ставится задача создания автономной программы — агента, взаимодействующего с внешней средой, называется агентным подходом.

Робототехника

Основная статья: Интеллектуальная робототехника

См. также: Робототехника

Области робототехники[19] и искусственного интеллекта тесно связаны друг с другом. Интегрирование этих двух наук, создание интеллектуальных роботов составляют ещё одно направление ИИ. Интеллектуальность требуется роботам, чтобы манипулировать объектами[20], выполнять навигацию с проблемами локализации (определять местонахождение, изучать ближайшие области) и планировать движение (как добраться до цели)[21]. Примером интеллектуальной робототехники могут служить игрушки-роботы Pleo, AIBO, QRIO.

Машинное творчество

Основная статья: Машинное творчество

Природа человеческого творчества ещё менее изучена, чем природа  интеллекта. Тем не менее, эта область  существует, и здесь поставлены проблемы написания компьютером музыки, литературных произведений (часто — стихов или сказок), художественное творчество. Создание реалистичных образов широко используется в кино и индустрии игр.

Отдельно выделяется изучение проблем технического творчества систем искусственного интеллекта. Теория решения изобретательских задач, предложенная в 1946 году Г. С. Альтшуллером, положила начало таким исследованиям.

Добавление данной возможности к любой интеллектуальной системе позволяет весьма наглядно продемонстрировать, что именно система воспринимает и как это понимает. Добавлением шума вместо недостающей информации или фильтрация шума имеющимися в системе знаниями производит из абстрактных знаний конкретные образы, легко воспринимаемые человеком, особенно это полезно для интуитивных и малоценных знаний, проверка которых в формальном виде требует значительных умственных усилий.

Другие области  исследований

Наконец, существует масса  приложений искусственного интеллекта, каждое из которых образует почти  самостоятельное направление. В  качестве примеров можно привести программирование интеллекта в компьютерных играх, нелинейное управление, интеллектуальные системы информационной безопасности.

Можно заметить, что многие области исследований пересекаются. Это свойственно для любой науки. Но в искусственном интеллекте взаимосвязь между, казалось бы, различными направлениями выражена особенно сильно, и это связано с философским спором о сильном и слабом ИИ.

Современный искусственный  интеллект

ASIMO — Интеллектуальный гуманоидный робот фирмы Honda

Можно выделить два направления  развития ИИ:

  • решение проблем, связанных с приближением специализированных систем ИИ к возможностям человека, и их интеграции, которая реализована природой человека (см. Усиление интеллекта);
  • создание искусственного разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества (см. Сильный и слабый искусственный интеллект).

Но в настоящий момент в области искусственного интеллекта наблюдается вовлечение многих предметных областей, имеющих скорее практическое отношение к ИИ, а не фундаментальное. Многие подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа пока так и не подошла. Ниже представлены лишь некоторые наиболее известные разработки в области ИИ.

Применение

Турнир RoboCup

Некоторые из самых известных ИИ-систем:

  • Deep Blue — победил чемпиона мира по шахматам. Матч Каспаров против суперЭВМ не принёс удовлетворения ни компьютерщикам, ни шахматистам, и система не была признана Каспаровым (подробнее см. Человек против компьютера). Затем линия суперкомпьютеров IBM проявилась в проектах brute force BluGene (молекулярное моделирование) и моделирование системы пирамидальных клеток в швейцарском центре Blue Brain[22].
  • Watson — перспективная разработка IBM, способная воспринимать человеческую речь и производить вероятностный поиск, с применением большого количества алгоритмов. Для демонстрации работы Watson принял участие в американской игре «Jeopardy!», аналога «Своей игры» в России, где системе удалось выиграть в обеих играх[23].
  • MYCIN — одна из ранних экспертных систем, которая могла диагностировать небольшой набор заболеваний, причем часто так же точно, как и доктора.
  • 20Q — проект, основанный на идеях ИИ, по мотивам классической игры «20 вопросов». Стал очень популярен после появления в Интернете на сайте 20q.net[24].
  • Распознавание речи. Системы такие как ViaVoice способны обслуживать потребителей.
  • Роботы в ежегодном турнире RoboCup соревнуются в упрощённой форме футбола.

Банки применяют системы  искусственного интеллекта (СИИ) в страховой  деятельности (актуарная математика), при игре на бирже и управлении собственностью. Методы распознавания  образов (включая, как более сложные  и специализированные, так и нейронные  сети) широко используют при оптическом и акустическом распознавании (в  том числе текста и речи), медицинской  диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.

Разработчики компьютерных игр применяют ИИ в той или иной степени проработанности. Это образует понятие «Игровой искусственный интеллект». Стандартными задачами ИИ в играх являются нахождение пути в двумерном или трёхмерном пространстве, имитация поведения боевой единицы, расчёт верной экономической стратегии и так далее.

Связь с другими  науками и явлениями культуры

Информация о работе Искусственный интеллект