История создания персонального компьютера

Автор работы: Пользователь скрыл имя, 16 Января 2012 в 21:27, реферат

Описание работы

Прогресс в вычислительной технике не может не восхищать. Всего за 50 лет быстродействие серийно выпускаемых ЭВМ увеличилось в миллион раз при существенном уменьшении размеров и энергопотребления этих умных монстров.
Сегодня производство компьютеров – крупнейшая отрасль промышленности, и объемы здесь таковы, что только персональных машин продано уже более миллиарда. Столь бурное развитие имеет свою причину и замечательную историю.

Содержание работы

ВВЕДЕНИЕ 3
1 Исторические предшественники компьютеров 5
2 Компьютеры с хранимой в памяти программой 7
3 ЭВМ 1-го поколения. Электронные лампы 7
4 ЭВМ 2-го поколения. Транзисторы 8
5 ЭВМ 3-го поколения. Интегральные схемы 9
6 ЭВМ 4-го поколения. Сверхбольшие интегральные схемы (СБИС) 10
7 ЭВМ 5-го поколения 11
8 Краткая история компьютерной техники 12
9 Конструкции персональных компьютеров 16
10 Стив Джобс: биография и роль в истории развития персональных компьютеров 20
ЗАКЛЮЧЕНИЕ 26
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 27

Файлы: 1 файл

История создания ПК реферат.doc

— 177.00 Кб (Скачать файл)

    4    ЭВМ 2-го поколения. Транзисторы  

    В 40-х и 50-х годах компьютеры создавались  на основе электронных ламп. Поэтому  компьютеры были очень большими (они  занимали огромные залы), дорогими и  ненадежными — ведь электронные  лампы, как и обычные лампочки часто перегорают.

    Но  в 1948 г. были изобретены транзисторы — миниатюрные и недорогие электронные приборы, которые смогли заменить электронные лампы. Это привело к уменьшению размеров компьютеров в сотни раз и повышению их надежности.

    Первые  компьютеры на основе транзисторов появились  в конце 50- х годов а к середине 60- х годов были созданы и значительно более компактные внешние устройства для компьютеров, что позволило фирме Digital Equipment выпустить в 1965 г. первый мини компьютер РDР-8 размером с холодильник и стоимостью всего 20 тыс. долларов (компьютеры 40- х и 50- х годов обычно стоили миллионы долларов).

    После появления транзисторов наиболее трудоемкой операцией при производстве компьютеров  было соединение и спайка транзисторов для создания электронных схем. Но в 1959 г. Роберт Нойс (будущий основатель фирмы Intel) изобрел способ, позволяющий создавать на одной пластине кремния транзисторы и все необходимые соединения между ними.

    Полученные  электронные схемы стали называться интегральными схемами или чипами.

    В 1968 г. фирма Вurroughs выпустила первый компьютер на интегральных схемах, а в 1970 г. фирма Intel начала продавать интегральные схемы памяти. В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год, что и обеспечивает постоянное уменьшение стоимости компьютеров и повышение быстродействия. Первое поколение ЭВМ, работающее на лампах, просуществовало до конца 50-х годов [3].

    В 1959 году родилось второе поколение, работающее на транзисторах. Полупроводники были существенно надежнее ламп, занимали меньше места и потребляли совсем немного электричества, поэтому только машин IBM 1401 серии было продано более 10 тыс. штук. СССР в те же годы выпускал только не только стационарные ламповые ЭВМ для наведения истребителей- перехватчиков (СПЕКТР-4), но и портативные полупроводниковые ЭВМ «КУРС», предназначенные для обработки радиолокационной информации.

    В этом же 1959-м IBM выпустила свой первый мэйнфрейм 7090 с быстродействием 230 тыс. операций в секунду и специальную модификацию IBM 7030 для ядерной лаборатории США в Лос-Аламосе.

    В апреле 1964 года IBM анонсировала System/360 –  первое семейство универсальных  программно-совместимых компьютеров  и периферийного оборудования. Элементной базой семейства «360» были гибридные микросхемы, и новые модели стали считать машинами третьего поколения. Таким образом, транзисторные машины в биографии ЭВМ заняли всего лишь 5 лет [5].  

    5    ЭВМ 3-го поколения. Интегральные схемы 

    Приоритет в изобретении интегральных схем, ставших элементной базой ЭВМ третьего поколения, принадлежит американским ученым Д. Килби и Р. Нойсу, сделавшим это открытие независимо друг от друга. Массовый выпуск интегральных схем начался в 1962 году, а в 1964 начал быстро осуществляться переход от дискретных элементов к интегральным.

    Упоминавшийся выше ЭНИАК размерами 9*15 метров в 1971 году мог бы быть собран на пластине в 1,5 квадратных сантиметра. Началось перевоплощение электроники в микроэлектронику.

    Несмотря  на успехи интегральной техники и появление мини-ЭВМ, в 60-х годах продолжали доминировать большие машины. Таким образом, третье поколение компьютеров, зарождаясь внутри второго, постепенно вырастало из него [1].

    Первая  массовая серия машин на интегральных элементах стала выпускаться в 1964 году фирмой IBM. Эта серия, известная под названием IBM-360, оказала значительное влияние на развитие вычислительной техники второй половины 60-х годов. Она объединила целое семейство ЭВМ с широким диапазоном производительности, причем совместимых друг с другом. Последнее означало, что машины стало возможно связывать в комплексы, а также без всяких переделок переносить программы, написанные для одной ЭВМ, на любую другую из этой серии.

    Таким образом, впервые было выявлено коммерчески  выгодное требование стандартизации аппаратного и программного обеспечения ЭВМ.

    В СССР первой серийной ЭВМ на интегральных схемах была машина «Наири-3», появившаяся  в 1970 году. Со второй половины 60-х годов  Советский Союз совместно со странами СЭВ приступил к разработке семейства универсальных машин, аналогичного системе IBM-360. В 1972 году началось серийное производство стартовой, наименее мощной модели Единой Системы – ЭВМ ЕС-1010, а еще через год – пяти других моделей.

    Их быстродействие находилась в пределах от десяти тысяч (ЕС-1010) до двух миллионов (ЕС-1060) операций в секунду. В рамках третьего поколения в США была построена уникальная машина «ИЛЛИАК-4», в составе которой в первоначальном варианте планировалось использовать 256 устройств обработки данных, выполненных на монолитных интегральных схемах [4].

    Позднее проект был изменен, из-за довольно высокой стоимости (более 16 миллионов  долларов). Число процессоров пришлось сократить до 64, а также перейти  к интегральным схемам с малой  степенью интеграции. Сокращенный вариант  проекта был завершен в 1972 году, номинальное быстродействие «ИЛЛИАК-4» составило 200 миллионов операций в секунду. Почти год этот компьютер был рекордсменом в скорости вычислений. Именно в период развития третьего поколения возникла чрезвычайно мощная индустрия вычислительной техники, которая начала выпускать в больших количествах ЭВМ для массового коммерческого применения. Компьютеры все чаще стали включаться в информационные системы или системы управления производствами. Они выступили в качестве очевидного рычага современной промышленной революции [3].  

    6  ЭВМ 4-го поколения. Сверхбольшие интегральные схемы (СБИС)  

    Начало 70-х годов знаменует переход  к компьютерам четвертого поколения  – на сверхбольших интегральных схемах (СБИС). Другим признаком ЭВМ нового поколения являются резкие изменения в архитектуре.

    Техника четвертого поколения породила качественно  новый элемент ЭВМ – микропроцессор. В 1971 году пришли к идее ограничить возможности процессора, заложив  в него небольшой набор операций, микропрограммы которых должны быть заранее введены в постоянную память. Оценки показали, что применение постоянного запоминающего устройства в 16 килобит позволит исключить 100200 обычных интегральных схем. Так возникла идея микропроцессора, который можно реализовать даже на одном кристалле, а программу в его память записать навсегда. В то время в рядовом микропроцессоре уровень интеграции соответствовал плотности, равной примерно 500 транзисторам на один квадратный миллиметр, при этом достигалась очень хорошая надежность. К середине 70-х годов положение на компьютерном рынке резко и непредвиденно стало изменяться. Четко выделились две концепции развития ЭВМ. Воплощением первой концепции стали суперкомпьютеры, а второй – персональные ЭВМ. Из больших компьютеров четвертого поколения на сверхбольших интегральных схемах особенно выделялись американские машины «Крей-1» и «Крей-2», а также советские модели «Эльбрус-1» и «Эльбрус-2». Первые их образцы появились примерно в одно и то же время – в 1976 году. Все они относятся к категории суперкомпьютеров, так как имеют предельно достижимые для своего времени характеристики и очень высокую стоимость [5].  

    7    ЭВМ 5-го поколения 

    На  ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработки всех прежних ЭВМ.

    Если  перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие "интеллектуализации" компьютеров - устранения барьера между человеком и компьютером. Компьютер теперь используется и дома, это компьютерные игры, прослушивание высококачественной музыки, просмотр фильмов. Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области.

    Параллельно с аппаратным усовершенствованием  современных компьютеров разрабатываются  и технологические разработки по увеличению количества инструкций. Первой разработкой в этой области стала MMX (MultiMedia eXtension- "мультимедиа–расширение") — технология, которая может превратить "простой" Pentium ПК в мощную мультимедийную систему.

    Как известно, на кристалле процессора Pentium интегрирован математический сопроцессор. Этот функциональный блок, который отвечает за "перемалывание чисел", но на практике, подобные возможности требуются все же достаточно редко, их используют в основном системы САПР и некоторые программы, решающие чисто вычислительные задачи. У большинства пользователей этот блок просто простаивает.

    Создавая  технологию MMX, фирма Intel стремилась решить две задачи: во-первых, задействовать  неиспользуемые возможности, а во-вторых, увеличить производительность ЦП при  выполнении типичных мультимедиа-программ. С этой целью в систему команд процессора были добавлены дополнительные инструкции (всего их 57) и дополнительные типы данных, а регистры блока вычислений с плавающей запятой выполняют функции рабочих регистров [6].

    Дополнительные  машинные команды предназначены  для таких операций, как быстрое преобразование Фурье (функция, используемая при декодировании видео), которые зачастую выполняются специальными аппаратными средствами.

    Процессоры, использующие технологию MMX, совместимы с большинством прикладных программ, ведь для "старого" программного обеспечения регистры MMX выглядят точно так же, как обычные регистры математического сопроцессора. Однако, встречаются и исключения. например, прикладная программа может одновременно обращаться только к одному блоку - либо вычислений с плавающей запятой, либо MMX. В ином случае результат, как правило, не определен и нередко происходит аварийное завершение прикладной программы.

    Технология MMX - это генеральное направление  развития архитектуры процессоров. В первую очередь ее преимущества смогут оценить конечные пользователи - мультимедиа-компьютеры стали заметно мощнее и дешевле.

    Эта идея оказалась настолько удачной, что за ММХ проследовал «расширенный ММХ», 3DNow!, «расширенный 3DNow!», а потом SSE и сейчас SSE2.

    Кроме технологических решений по увеличению количества инструкций, велась работа и по улучшению процесса производства. Ведь транзисторов для обработки информации становилось все больше и больше, и они в конце концов просто не помещались на кристалл, что приводило к более совершенным решениям. В настоящее время процессоры Intel выпускаются по техпроцессу с нормой в 0,13 мКм, и на одном квадратном миллиметре кристалла располагается миллионы транзисторов. Intel планирует перейти на 0,09 мКм техпроцесс в ближайшем будущем [6].  

    8    Краткая история компьютерной техники 

    1623г.  Первая «считающая машина», созданная  Уильямом Шикардом. Это довольно  громоздкий аппарат мог применять  простые арифметические действия (сложение, вычитание) с 7-значными  числами.

    1644г.  «Вычислитель» Блеза Паскаля  – первая по настоящему популярная считающая машина, производившая арифметические действия над 5-значными числами.

    1668г.  Вычислитель сера Сэмюэля Морланда, предназначавшийся для финансовых  операций.

    1674г.  Вильгельм Годфрид фон Лейбниц  сконструировал механическую счётную машину, которая умела производить не только операции сложения и вычитания, но и умножения!

    1820г.  Первый калькулятор – «Арифмометр»  Шарля де Кольмара. Продержалось  на рынке (с некоторыми усовершенствованиями) целых 90 лет!

    1834г.  Знаменитая «Аналитическая машина» Чарльза Бэббиджа – первый программируемый компьютер, использовавший примитивные программы на перфокартах.

Информация о работе История создания персонального компьютера