Конструируем систему охлаждения компьютера

Автор работы: Пользователь скрыл имя, 05 Ноября 2013 в 20:46, статья

Описание работы

Эта статья обобщает опыт автора по конструированию эффективных и малошумящих систем воздушного охлаждения компьютеров. Рассматриваются основные принципы построения системы охлаждения, приведены результаты некоторых исследований в этой области и множество практических рекомендаций. Используя приведённые здесь материалы, вы сможете сконструировать систему охлаждения под собственные нужды, исходя из ваших потребностей и возможностей.

Файлы: 1 файл

Конструируем систему охлаждения компьютера.docx

— 725.84 Кб (Скачать файл)

Многие сталкивались со старыми  вентиляторами, в которых подшипники скольжения выработали свой ресурс: вал  крыльчатки дребезжит и вибрирует  при работе, издавая характерный  рычащий звук. В принципе, такой  подшипник можно отремонтировать, смазав его твёрдой смазкой, —  но многие ли согласятся ремонтировать  вентилятор, цена которому всего пара долларов?

Характеристики  вентиляторов

Вентиляторы различаются  по своему размеру и толщине: обычно в компьютерах встречаются типоразмеры 40×40×10 мм, для охлаждения видеокарт и карманов для жёстких дисков, а также 80×80×25, 92×92×25, 120×120×25 мм для охлаждения корпуса. Также вентиляторы различаются типом и конструкцией устанавливаемых электродвигателей: они потребляют различный ток и обеспечивают разную скорость вращения крыльчатки. От размеров вентилятора и скорости вращения лопастей крыльчатки зависит производительность: создаваемое статическое давление и максимальный объём переносимого воздуха.

Объём переносимого вентилятором воздуха (расход) измеряется в кубометрах в минуту или кубических футах в минуту (CFM, cubic feet per minute). Производительность вентилятора, указанная в характеристиках, измеряется при нулевом давлении: вентилятор работает в открытом пространстве. Внутри корпуса компьютера вентилятор дует в системный блок определенного размера, потому он создаёт в обслуживаемом объёме избыточное давление. Естественно, что объёмная производительность будет приблизительно обратно пропорциональна создаваемому давлению. Конкретный вид расходной характеристики зависит от формы использованной крыльчатки и других параметров конкретной модели. Например, соответствующий график для вентилятора GlacialTech SilentBlade GT80252BDL:

Из этого следует простой  вывод: чем интенсивнее работают вентиляторы в задней части корпуса  компьютера, тем больше воздуха можно  будет прокачать через всю  систему, и тем эффективнее будет  охлаждение.

Уровень шума вентиляторов

Уровень шума, создаваемый  вентилятором при работе, зависит  от различных его характеристик (подробнее о причинах его возникновения  можно прочесть в статье Шумовые характеристики кулеров и методика измерения уровня шума). Несложно установить зависимость между производительностью и шумом вентилятора. На сайте крупного производителя популярных систем охлаждения Titan, в разделе корпусных вентиляторов мы видим: многие вентиляторы одного и того же размера комплектуются разными электродвигателями, которые рассчитаны на различную скорость вращения. Поскольку крыльчатка используется одна и та же, получаем интересующие нас данные: характеристики одного и того же вентилятора при разных скоростях вращения. Составляем таблицу для трёх самых распространённых типоразмеров: толщина 25 мм, 80×80×25 мм, 92×92×25 мм и 120×120×25 мм.

Жирным шрифтом выделены самые популярные типы вентиляторов. 
Наклонным шрифтом выделены расчётные данные.

Посчитав коэффициент  пропорциональности потока воздуха  и уровня шума к оборотам, видим  почти полное совпадение. Для очистки  совести считаем отклонения от среднего: меньше 5%. Таким образом, мы получили три линейные зависимости, по 5 точек каждая. Не Бог весть, какая статистика, но для линейной зависимости этого достаточно: гипотезу считаем подтверждённой.

Объёмная  производительность вентилятора пропорциональна  количеству оборотов крыльчатки, то же самое справедливо и для уровня шума.

Используя полученную гипотезу, мы можем экстраполировать полученные результаты методом наименьших квадратов (МНК): в таблице эти значения выделены наклонным шрифтом. Нужно, однако, помнить: область применения этой модели ограничена. Исследованная зависимость линейна  в некотором диапазоне скоростей  вращения; логично предположить, что  линейный характер зависимости сохранится и в некоторой окрестности  этого диапазона; но при очень  больших и очень малых оборотах картина может существенно измениться.

Теперь рассмотрим линейку  вентиляторов другого производителя: GlacialTech SilentBlade 80×80×25 мм, 92×92×25 мм и 120×120×25 мм. Составим аналогичную табличку:

Наклонным шрифтом выделены расчётные данные. 
Как было сказано выше, при значениях скорости вращения вентилятора, существенно отличающихся от исследованных, линейная модель может быть неверна. Полученные экстраполяцией значения следует понимать как приблизительную оценку.

Обратим внимание на два  обстоятельства. Во-первых, вентиляторы  GlacialTech работают медленнее, во-вторых, - эффективнее. Очевидно, это результат использования крыльчатки с более сложной формой лопастей: даже при одинаковых оборотах, вентилятор GlacialTech переносит больше воздуха, чем Titan: см. графу прирост. А уровень шума при одинаковых оборотах примерно равен: пропорция соблюдается даже для вентиляторов разных производителей с различной формой крыльчатки.

Нужно понимать, что реальные шумовые характеристики вентилятора  зависят от его технической конструкции, создаваемого давления, объёма прокачиваемого воздуха, от типа и формы преград  на пути воздушных потоков; то есть, от типа корпуса компьютера. Поскольку  корпуса используются самые разные, невозможно напрямую применять измеренные в идеальных условиях количественные характеристики вентиляторов — их можно только сравнивать между собой  для разных моделей вентиляторов.

Ценовые категории  вентиляторов

Рассмотрим фактор стоимости. Для примера возьмём в одном  и том же интернет-магазине Grand.ua цены на Titan и на GlacialTech: результаты вписаны в приведённых выше таблицах (рассматривались вентиляторы с двумя шарикоподшипниками). Как видно, вентиляторы этих двух производителей принадлежат к двум разным классам: GlacialTech работают на более низких оборотах, потому меньше шумят; при одинаковых оборотах они эффективнее Titan — но они всегда дороже на доллар-другой. Если нужно собрать наименее шумную систему охлаждения (например, для домашнего компьютера), придётся раскошелиться на более дорогие вентиляторы со сложной формой лопастей. При отсутствии таких строгих требований или при ограниченном бюджете (например, для офисного компьютера), вполне подойдут и более простые вентиляторы. Различный тип подвеса крыльчатки, используемый в вентиляторах (подробнее см. раздел Устройство вентилятора), также влияет на стоимость: вентилятор тем дороже, чем более сложные подшипники используются.

Рассмотренные выше марки Titan и GlacialTech известны своими очень демократичными ценами. Вентиляторы других популярных брендов — признанных лидеров в производстве систем охлаждения (Zalman, Cooler Master, Scythe, Arctic Cooling и других) стоят, как правило, существенно дороже; правда, при этом некоторые модели обладают заметно лучшими техническими характеристиками (см. сравнение различных моделей).

NB Марки вентиляторов Titan и GlacialTech, а также другие модели различных устройств были выбраны как самые распространённые на нашем рынке изделия. Представители производителей не вступали в контакт с автором и никак не влияли на содержимое статьи.

Подключение вентиляторов

Вентиляторы охлаждения компьютера стандартно запитываются напряжением +12 В. Питание подаётся при помощи специальных трёх- или четырёхконтактных разъёмов, или разъёмов для питания жёстких дисков и оптических приводов (их часто называют молекс, по имени разработавшей их фирмы Molex):

 
 

Ключом разъёма служат скошенные углы с одной из сторон. Провода подключены следующим образом: два центральных — «земля», общий  контакт (чёрный провод); +5 В — красный, +12 В — жёлтый. Для питания вентилятора через молекс-разъём используются только два провода, обычно чёрный («земля») и красный (напряжение питания). Подключая их к разным контактам разъёма, можно получить различную скорость вращения вентилятора. Стандартное напряжение в 12 В запустит вентилятор со штатной скоростью, напряжение в 5—7 В обеспечивает примерно половинную скорость вращения. Предпочтительно использовать более высокое напряжение, так как не каждый электромотор в состоянии надёжно запускаться при чересчур низком напряжении питания.

12 В

 

7 В

5 В

штатная скорость вращения

 

половинная скорость вращения

 

Обратите внимание на расположение ключа разъёма: 
на рисунках скошенные углы находятся снизу!


Как показывает опыт, скорость вращения вентилятора при подключении к +5 В, +6 В и +7 В примерно одинакова (с точностью до 10%, что сравнимо с точностью измерений: скорость вращения постоянно изменяется и зависит от множества факторов, вроде температуры воздуха, малейшего сквозняка в комнате и т. п.)

Напоминаю, что производитель гарантирует стабильную работу своих устройств только при использовании стандартного напряжения питания. Но, как показывает практика, подавляющее большинство вентиляторов отлично запускаются и при пониженном напряжении.

Контакты зафиксированы  в пластмассовой части разъёма  при помощи пары отгибающихся металлических  «усиков». Не составляет труда извлечь  контакт, придавив выступающие части  тонким шилом или маленькой отвёрткой. После этого «усики» нужно  опять разогнуть в стороны, и вставить контакт в соответствующее гнездо пластмассовой части разъёма:

Иногда кулеры и вентиляторы оборудуются двумя разъёмами: подключёнными параллельно молекс- и трёх- (или четырёх-) контактным. В таком случае подключать питание нужно только через один из них:

В некоторых случаях используется не один молекс-разъём, а пара «мама-папа»: так можно подключить вентилятор к тому же проводу от блока питания, который запитывает жёсткий диск или оптический привод. Если вы переставляете контакты в разъёме, чтобы получить на вентиляторе нестандартное напряжение, обратите особое внимание на то, чтобы переставить контакты во втором разъёме в точности таком же порядке. Невыполнение этого требования чревато подачей неверного напряжения питания на жёсткий диск или оптический привод, что наверняка приведёт к их мгновенному выходу из строя.

В трёхконтактных разъёмах ключом для установки служит пара выступающих направляющих с одной стороны:

 

Ответная часть находится  на контактной площадке, при подключении  она входит между направляющими, также выполняя роль фиксатора. Соответствующие разъёмы для питания вентиляторов находятся на материнской плате (как правило, несколько штук в разных местах платы) или на плате специального контроллера, управляющего вентиляторами:

Помимо «земли» (чёрный провод) и +12 В (обычно красный, реже: жёлтый), есть ещё тахометрический контакт: он используется для контроля скорости вращения вентилятора (белый, синий, жёлтый или зелёный провод). Если вам не нужна возможность контроля над оборотами вентилятора, то этот контакт можно не подключать. Если питание вентилятора подведено отдельно (например, через молекс-разъём), допустимо при помощи трёхконтактного разъёма подключить только контакт контроля за оборотами и общий провод — такая схема часто используется для мониторинга скорости вращения вентилятора блока питания, который запитывается и управляется внутренними схемами БП.

Четырёхконтактные разъёмы появились сравнительно недавно на материнских платах с процессорными разъёмами LGA 775 и socket AM2. Отличаются они наличием дополнительного четвёртого контакта, при этом полностью механически и электрически совместимы с трёхконтактными разъёмами:

 

Два одинаковых вентилятора с трёхконтактными разъёмами можно подключить последовательно к одному разъёму питания. Таким образом, на каждый из электромоторов будет приходится по 6 В питающего напряжения, оба вентилятора будут вращаться с половинной скоростью. Для такого соединения удобно использовать разъёмы питания вентиляторов: контакты легко извлечь из пластмассового корпуса, придавив фиксирующий «язычок» отвёрткой. Схема подключения приведена на рисунке далее. Один из разъёмов подключается к материнской плате, как обычно: он будет обеспечивать питанием оба вентилятора. Во втором разъёме при помощи кусочка проволоки нужно закоротить два контакта, после чего заизолировать его скотчем или изолентой:

Настоятельно  не рекомендуется соединять таким  способом два разных электромотора: из-за неравенства электрических характеристик в различных режимах работы (запуск, разгон, стабильное вращение) один из вентиляторов может не запускаться вовсе (что чревато выходом электромотора из строя) или требовать для запуска чрезмерно большой ток (чревато выходом из строя управляющих цепей).

Часто для ограничения  скорости вращения вентилятора примеряются  постоянные или переменные резисторы, включенные последовательно в цепи питания. Изменяя сопротивление  переменного резистора, можно регулировать скорость вращения: именно так устроены многие ручные регуляторы скорости вентиляторов. Конструируя подобную схему нужно  помнить, что, во-первых, резисторы греются, рассеивая часть электрической  мощности в виде тепла, — это не способствует более эффективному охлаждению; во-вторых, электрические характеристики электродвигателя в различных режимах  работы (запуск, разгон, стабильное вращение) не одинаковы, параметры резистора  нужно подбирать с учётом всех этих режимов. Чтобы подобрать параметры  резистора, достаточно знать закон  Ома; использовать нужно резисторы, рассчитанные на ток, не меньший, чем  потребляет электродвигатель. Однако лично я не приветствую ручное управление охлаждением, так как  считаю, что компьютер — вполне подходящее устройство, чтобы управлять  системой охлаждения автоматически, без  вмешательства пользователя.

Контроль и  управление вентиляторами

Большинство современных  материнских плат позволяет контролировать скорость вращения вентиляторов, подключённых к некоторым трёх- или четырёхконтактным разъёмам. Более того, некоторые из разъёмов поддерживают программное управление скоростью вращения подключённого вентилятора. Не все размещённые на плате разъёмы предоставляют такие возможности: например, на популярной плате Asus A8N-E есть пять разъёмов для питания вентиляторов, контроль над скоростью вращения поддерживают только три из них (CPU, CHIP, CHA1), а управление скоростью вентилятора — только один (CPU); материнская плата Asus P5B имеет четыре разъёма, все четыре поддерживают контроль за скоростью вращения, управление скоростью вращения имеет два канала: CPU, CASE1/2 (скорость двух корпусных вентиляторов изменяется синхронно). Количество разъёмов с возможностями контроля или управления скоростью вращения зависит не от используемого чипсета или южного моста, а от конкретной модели материнской платы: модели разных производителей могут различаться в этом отношении. Часто разработчики плат намеренно лишают более дешёвые модели возможностей управления скоростью вентиляторов. Например, материнская плата для процессоров Intel Pentiun 4 Asus P4P800 SE способна регулировать обороты кулера процессора, а её удешевлённый вариант Asus P4P800-X — нет. В таком случае можно использовать специальные устройства, которые способны управлять скоростью нескольких вентиляторов (и, обычно, предусматривают подключение целого ряда температурных датчиков) — их появляется всё больше на современном рынке.

Информация о работе Конструируем систему охлаждения компьютера