Мейнфрейм

Автор работы: Пользователь скрыл имя, 26 Октября 2015 в 10:40, реферат

Описание работы

Другой компьютер общего назначения этой эры был ENIAC (Электронный Числовой Интегратор и Компьютер), который был построен в 1946. Это было первым компьютером, способным к перепрограммированию, чтобы решать полный спектр вычислительных проблем. ENIAC содержал 18 000 термоэлектронный ламп, весивший более чем 27 тонн, и потреблявший электроэнергии 25 киловатт в час. ENIAC выполнял 100 000 вычислений в секунду. Изобретение транзистора означало, что неэффективные термоэлектронные лампы могли быть заменены более мелкими и надежными компонентами. Это было следующим главным шагом в истории вычислений.

Файлы: 1 файл

3 - Курсовая.docx

— 232.58 Кб (Скачать файл)

 

 

 

2.2. Появление систем и сетей хранения данных

 

Другой особенностью современной истории развития вычислительных систем, наряду с появлением блейд-серверов, стало появления специализированных систем и сетей хранения данных. Внутренние подсистемы хранения серверов часто уже не могли предоставить необходимый уровень масштабируемости и производительности в условиях лавинообразного наращивания объемов обрабатываемой информации. В итоге появились внешние системы хранения данных, ориентированные сугубо на решение задач хранения данных и предоставление интерфейса доступа к данным для их использования.

Система Хранения Данных (СХД) - это программно-аппаратное решение по организации надёжного хранения информационных ресурсов и предоставления к ним гарантированного доступа.

Системы хранения данных представляют собой надежные устройства хранения, выделенные в отдельный узел. Система хранения данных может подключаться к серверам многими способами. Наиболее производительным является подключение по оптическим каналам (Fiber Channel), что дает возможность получать доступ к системам хранения данных со скоростями 4-8 Гбит/сек. Системы хранения данных так же имеют резервирование основных аппаратных компонент – несколько блоков питания, raid контроллеров, FC адаптеров и оптических патчкордов для подключения к FC коммутаторам.

Рисунок 2.3 Типичная Система хранения данных начального уровня (Sun StorageTek 6140)

 

Отметим основные преимущества использования СХД.

    • Высокая надёжность и отказоустойчивость – реализуется полным или частичным резервированием всех компонент системы (блоков питания, путей доступа, процессорных модулей, дисков, кэша и т.д.), а также мощной системой мониторинга и оповещения о возможных и существующих проблемах.
    • Высокая доступность данных – обеспечивается продуманными функциями сохранения целостности данных (использование технологии RAID, создание полных и мгновенных копий данных внутри дисковой стойки, реплицирование данных на удаленную СХД и т.д.) и возможностью добавления (обновления) аппаратуры и программного обеспечения в беспрерывно работающую систему хранения данных без остановки комплекса.
    • Мощные средства управления и контроля – управление системой через web-интерфейс или командную строку, выбор нескольких вариантов оповещения администратора о неполадках, полный мониторинг системы, работающая на уровне «железа» технология диагностики производительности.
    • Высокая производительность – определяется числом жёстких дисков, объёмом кэш-памяти, вычислительной мощностью процессорной подсистемы, числом внутренних (для жёстких дисков) и внешних (для подключения хостов) интерфейсов, а также возможностью гибкой настройки и конфигурирования системы для работы с максимальной производительностью.
    • Беспроблемная масштабируемость – обычно существует возможность наращивания числа жёстких дисков, объёма кэш-памяти, аппаратной модернизации существующей системы хранения данных, наращивания функционала с помощью специального ПО, работающего на стойке, без значительного переконфигурирования или потерь какой-то функциональности СХД. Этот момент позволяет значительно экономить и более гибко проектировать свою сеть хранения данных.

Сегодня системы хранения данных являются одним из ключевых элементов, от которых зависит непрерывность бизнес-процессов компании. В современной корпоративной ИТ-инфраструктуре СХД, как правило, отделены от основных вычислительных серверов, адаптированы и настроены для различных специализированных задач. Системы хранения данных реализуют множество функций, они играют важную роль в построении систем оперативного резервного копирования и восстановления данных, отказоустойчивых кластеров, высоко доступных ферм виртуализации.

SAN – это высокоскоростная коммутируемая сеть передачи данных, объединяющая серверы, рабочие станции, дисковые хранилища и ленточные библиотеки. Обмен данными происходит по протоколу Fibre Channel, оптимизированному для быстрой гарантированной передачи сообщений и позволяющему передавать информацию на расстояние от нескольких метров до сотен километров.

Движущей силой для развития сетей хранения данных стал взрывной рост объема деловой информации (такой как электронная почта, базы данных и высоконагруженные файловые сервера), требующей высокоскоростного доступа к дисковым устройствам на блочном уровне. Ранее на предприятии возникали «острова» высокопроизводительных дисковых массивов SCSI. Каждый такой массив был выделен для конкретного приложения и виден ему как некоторое количество «виртуальных жестких дисков». Сеть хранения данных (Storage Area Network или SAN) позволяет объединить эти «острова» средствами высокоскоростной сети. Основу SAN составляет волоконно-оптическое соединение устройств по интерфейсу Fibre Chanel, обеспечивающее скорость передачи информации между объектами 1,2,4 или 8 Mbit/sec. Сети хранения помогают повысить эффективность использования ресурсов систем хранения, поскольку дают возможность выделить любой ресурс любому узлу сети.

Рассмотрим основные преимущества SAN.

    • Производительность. Технологии SAN позволяют обеспечить высокую производительность для задач хранения и передачи данных.
    • Масштабируемость. Сети хранения данных обеспечивают удобство расширения подсистемы хранения, позволяют легко использовать приобретенные ранее устройства совместно с новыми устройствами хранения данных.
    • Гибкость. Совместное использование систем хранения данных, как правило, упрощает администрирование и добавляет гибкость, поскольку кабели и дисковые массивы не нужно физически транспортировать и перекоммутировать от одного сервера к другому. SAN позволяет подключить новые серверы и дисковые массивы к сети без остановки системы.
    • Централизованная загрузка. Другим преимуществом является возможность загружать сервера прямо из сети хранения. При такой конфигурации можно быстро и легко заменить сбойный сервер, переконфигурировав SAN таким образом, что сервер-замена, будет загружаться с логического диска сбойного сервера.
    • Отказоустойчивость. Сети хранения помогают более эффективно восстанавливать работоспособность после сбоя. В SAN может входить удаленный участок с вторичным устройством хранения. В таком случае можно использовать репликацию — реализованную на уровне контроллеров массивов, либо при помощи специальных аппаратных устройств. Спрос на такие решения значительно возрос после событий 11 сентября 2001 года в США.
    • Управление. Технологии SAN позволяют обеспечить централизованное управление всей подсистемой хранения данных.

Рассмотрим некоторые топологии сетей хранения данных.

Однокоммутаторная структура (англ. single-switch fabric) состоит из одного коммутатора Fibre Channel, сервера и системы хранения данных. Обычно эта топология является базовой для всех стандартных решений – другие топологии создаются объединением однокоммутаторных ячеек.

Рисунок 2.4 Однокоммутаторная структура SAN

 

Каскадная структура— набор ячеек, коммутаторы которых соединены в дерево с помощью межкоммутаторных соединений.

Рисунок 2.5 Каскадная структура SAN

 

Решетка — набор ячеек, коммутатор каждой из которых соединен со всеми другими. При отказе одного (а в ряде сочетаний — и более) соединения связность сети не нарушается. Недостаток — большая избыточность соединений.

Рисунок 2.6 Структура Решетка

 

Кольцо— практически повторяет схему топологии решётка. Среди преимуществ — использование меньшего количества соединений.

 

Рисунок 2.7 Структура Кольцо

 

2.3. Консолидация ИТ инфраструктуры

 

Консолидация — это объединение вычислительных ресурсов либо структур управления в едином центре.

Анализ международного опыта позволяет сегодня говорить о четкой тенденции к консолидации ИТ-ресурсов корпораций. Именно она способна существенно уменьшить затраты на ИТ. Сэкономленные же средства можно направить на повышение качества имеющихся информационных услуг и внедрение новых. Кроме оптимизации расходов на ИТ, консолидация ИТ-ресурсов позволяет улучшить управляемость предприятий за счет более актуальной и полной информации об их функционировании. Обычно говорят о консолидации:

    • серверов - перемещение децентрализованных, приложений, распределенных на различных серверах компании, в один кластер централизованных гомогенных серверов;
    • систем хранения - совместное использование централизованной системы хранения данных несколькими гетерогенными узлами;
    • приложений - размещение нескольких приложений на одном хосте.

При этом можно выделить два базовых типа консолидации — физическую и логическую. Физическая консолидация подразумевает географическое перемещение серверов на единую площадку (в центр данных), а логическая — централизацию управления.

Перемещение компьютеров в единый центр обработки данных позволяют обеспечить комфортные условия для оборудования и технического персонала, а также увеличить степень физической защиты серверов. Кроме того, в центре обработки данных можно использовать более производительное и высококачественное оборудование, которое экономически неэффективно устанавливать в каждом подразделении. Создавая центры обработки данных, можно снизить расходы на техническую поддержку и управление самыми важными серверами предприятия. Удачным примером оборудования, которое может успешно решить задачи консолидации вычислительных ресурсов в организациях любого уровня являются блейд-системы, а также и системы и сети хранения данных.

Очевидное преимущество этого решения в том, что упрощается выделение персонала поддержки и его работа по развертыванию и управлению системами, снижается степень дублирования опытных кадров. Централизация также облегчает использование стандартизованных конфигураций и процессов управления, создание рентабельных систем резервного копирования для восстановления данных после сбоя и поддержания связности бизнеса. Упрощается и решение вопросов организации высококачественного контроля за состоянием окружающей среды и обеспечения физической защиты. Может быть улучшена и сетевая безопасность, поскольку серверы оказываются под защитой единого, централизованно управляемого межсетевого экрана.

Логический тип консолидации подразумевает перестройку системы управления ИТ-инфраструктуры. Это необходимо как для увеличения масштабируемости и управляемости сложной распределенной вычислительной системы, так и для объединения сегментов корпоративной сети. Логическая консолидация обеспечивает введение централизованного управления и унификацию работы с ресурсами компании на основе открытых стандартов. В результате появляется возможность создания глобальных информационных служб предприятия — каталога LDAP, корпоративного портала или ERP-системы, что в конечном итоге позволит улучшить управляемость предприятия за счет более актуальной и полной информации об его функционировании.

Логическая консолидация приложений приводит к централизации управления критическими для бизнеса системами и приложениями. Преимущества логической консолидации очевидны: в первую очередь это высвобождение аппаратных ресурсов, которые можно использовать на других участках информационной системы. Во-вторых, более простая и логичная структура управления ИТ-инфраструктурой делает ее более гибкой и приспособленной для будущих изменений.

Сценарий гомогенной консолидации предусматривает перенос одного масштабного приложения, ранее выполнявшегося на нескольких серверах, на один, более мощный (рис. 1.6). В качестве примера такой операции можно привести базы данных, которые зачастую наращивают экстенсивным путем по мере роста объема обрабатываемой информации. Объединение данных и приложений на одном сервере заметно ускоряет процессы обработки и поиска, а также повышает уровень целостности.

Гетерогенная консолидация по содержанию схожа с гомогенной, но в этом случае объединению подлежат разные приложения. Например, несколько экземпляров Exchange Server и SQL Server, ранее запускавшиеся на отдельных компьютерах, могут быть сведены на единой машине. Преимущества гетерогенной консолидации - возрастающая масштабируемость сервисов и более полное задействование системных ресурсов.

 

 

 

 

 

Рисунок 2.8 Консолидация приложений

 

Как отмечают специалисты по облачным технологиям – консолидация ИТ-инфраструктуры – является первым шагом к “облаку”. Чтобы перейти к использованию облачных технологий, компаниям необходимо сначала решить задачи неконсолидированной ИТ-инфраструктуры. «Без консолидации невозможно построить эффективное процессно-ориентированное управление, поскольку отсутствует единая точка предоставления сервисов».

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ЗАКЛЮЧЕНИЕ

 

Анализируя историю развития информационных технологий и современные тенденции можно сделать вывод, что эволюционный виток ИТ, начавшийся вместе с эпохой мэйнфреймов более пятидесяти лет назад, замкнулся – вместе с облаками мы вернулись к централизации ресурсов, но на этот раз не на уровне мэйнфреймов с их зелеными терминалами а на новом технологическом уровне.

Выступая на конференции, посвященной проблемам современных процессоров, профессор Массачусетского технологического института Ананд Агарвал сказал: «Процессор – это транзистор современности». Новый уровень отличается тем, что здесь также собираются мэйнфреймы, но виртуальные, и не из отдельных транзисторов, как полвека назад, а из целых процессоров или целиком из компьютеров. На заре ИТ многочисленные компании и организации «лепили» собственные компьютеры из дискретных компонентов, монтируя их на самодельных печатных платах – каждая организация делала свою машину, и ни о какой стандартизации или унификации и речи не могло быть. И вот на пороге второго десятилетия XXI века ситуация повторяется – точно так же из серверов-лезвий, компьютеров, разнообразного сетевого оборудования собираются внешние и частные облака. Одновременно наблюдается та же самая технологическая разобщенность и отсутствие унификации: Microsoft, Google, IBM, Aptana, Heroku, Rackspace, Ning, Salesforce строят глобальные мэйнфреймы, а кто-то под собственные нужды создает частные облака, которые являются теми же мэйнфреймами, но меньшего масштаба. Остается предположить, что впереди изобретение интегральной схемы и микропроцессора.

 

 

 

 

 

 

 

 

 

 

 

 

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

 

  1. John W. Rittinghouse, James F. Ransome – «Cloud Computing: Implementation, Management, and Security»
  2. http://www.hwp.ru/articles/Blade_serveri_ih_istoriya_2C_osnovnie_preimushchestva_2C_sovremennie_sistemi/
  3. http://sun.com
  4. http://hp.com

 

 


Информация о работе Мейнфрейм