Принтеры, копиры и плоттеры

Автор работы: Пользователь скрыл имя, 08 Апреля 2013 в 19:14, лекция

Описание работы

Ромашковые принтеры сродни печатным машинкам. В настоящее время как таковых ромашковых принтеров практически не существует и принцип печати ромашкой используется в электронных и механических печатных машинках.
В свое время такие принтеры были широко распространены, однако с появлением более скоростных матричных ударных аппаратов, а также лазерных принтеров ромашковые практически исчезли и в настоящее время такой способ печати используется только в печатных машинках.
Ромашковые печатающие устройства единственные среди всех используемых принципов печати, которые не формируют изображение матрицей из точек.

Файлы: 1 файл

Лекция 8.doc

— 322.50 Кб (Скачать файл)

Сопла пьезоэлектрической головки снабжаются пьезоэлементами  на пути подачи чернил. При прикладывании  электрического напряжения происходит деформация элемента и изменение  объема, заполненного чернилами. Поскольку жидкость практически несжимаема, то капля чернил выталкивается из сопла на бумагу. Достоинством такого способа печати является малый размер капли и управляемый процесс ее формирования, а как следствие - малый размер точки и отсутствие сателлитов. Недостатком - то, что такая головка стоит очень дорого. Правда если пользоваться фирменными чернилами, то она служит долго и по расходникам такой принтер получается дешевле других (если конечно и на них используются фирменные расходные материалы). Такие головки разрабатывает и использует фирма Epson.

Для цветной печати используются чернила  цветов CMY. Картриджи с цветными чернилами  могут быть выполнены в виде одного блока, что обычно встречается в  дешевых или старых принтерах, либо в виде отдельных "чернильниц". В последнем случае пользователю не придется выбрасывать остатки чернил из-за того, что в картридже закончился один из цветов. Существует также класс фотопринтеров, которые используют шесть цветов вместо четырех. Добавляются т. н. Light Cyan и Light Magenta. За счет этого достигается более качественная передача оттенков цвета и полутонов. Фотографии, напечатанные на таких принтерах выглядят как настоящие. Во всех случаях оттенки получают за счет более или менее плотного заполнения листа точками. Такое заполнение (растрирование) всегда представляет собой компромисс между количеством оттенков и разрешающей способностью печати (чем больше оттенков - тем ниже разрешающая способность и наоборот). Алгоритмов и способов растрирования существует множество и отвечает за них драйвер принтера. Удачный драйвер способен заметно улучшить качество картинки.

Механика струйного принтера не представляет собой ничего особенного и аналогична по конструкции с  механикой матричных принтеров. Та же каретка с печатающей головкой, то же протяжной механизм подачи бумаги Картридж с чернилами может устанавливаться как непосредственно на каретке, так и представлять собой отдельную емкость из которой подача осуществляется через трубочку (такая конструкция более характерна для дорогих принтеров широкого формата).

В настоящее время основная борьба ведется за уменьшение размера капли  и как следствие - повышение разрешения. Каждый производитель имеет в  своем арсенале ряд преимуществ  и в зависимости от требований, выдвигаемых к принтеру можно выбирать того или иного производителя.

Следует также отметить, что струйные принтеры большого формата сильно потеснили  плоттеры (в действительности они  практически вытеснили перьевые плоттеры), поскольку изготовить такой  принтер не слишком сложно и как следствие, цена его не будет очень высокой. Кроме того, струйный плоттер печатает быстрее и может печатать в цвете.

Достоинства:

  • низкая цена устройства
  • возможность печати в цвете
  • относительно высокая скорость печати (по сравнению с матричными принтерами)
  • низкие шумы при работе

Недостатки:

  • высокая стоимость расходных материалов
  • низкая скорость (по сравнению с лазерными устройствами)

Лазерные принтеры и копировальные  аппараты

Электростатическая фотография

В основе работы, как копировального аппарата, так и лазерного принтера лежит процесс сухой ксерографии (лат. xeros - сухой и graphos - писать). В свою очередь он базируется на электростатической фотографии.

Ксерографический процесс был  изобретен американским инженером  Честером Карлсоном в 1938 г. В ноябре 1940 г. он получил патент на свое изобретение. В 1947 г. американская компания "Халоид Компани" купила данное изобретение для разработки первого копировального аппарата, который и был произведен в 1950 г. В последствии эта компания несколько раз преобразовывалась и в настоящее время мы знаем ее под названием Xerox.

В основе электростатической фотографии лежит способность некоторых  полупроводников уменьшать свое удельное сопротивление под действием  света. Такие полупроводники называются фотопроводниками и используются для изготовления фоторецепторов.

Основные характеристики фотопроводников  перечислены ниже.

  • Спектральная чувствительность - характеризует способность фотопроводника реагировать на излучение различных длин волн. Ни один фотопроводник не может одинаково реагировать на различные длины волн. Некоторые типы фоторецепторов слабо реагируют на голубой цвет, который вообще не воспроизводится на копии, некоторые слабо реагируют на желтый цвет, при этом копия, выполненная с оригинала, напечатанного на желтой бумаге приобретает темный фон. В идеале фотопроводник должен одинаково хорошо передавать все цвета, однако обычно этого не происходит.
  • Фотоэлектрическая чувствительность (скорость формирования изображения) - это величина, характеризующая скорость уменьшения заряда на фоторецепторе при освещении его светом заданной интенсивности. Чем меньше остаточная величина заряда на фоторецепторе после его экспонирования, тем выше качество копии. Эта величина может зависеть от материала, срока эксплуатации и состояния проводника.
  • Скорость темновой утечки - величина, характеризующая, как быстро фотопроводник теряет заряд в темноте. Это связано с тем, что полупроводник, из которого изготовлен фоторецептор хотя и приобретает в темноте свойства диэлектрика, но все же не может хранить заряд так долго, как это могут делать диэлектрики.
  • Усталость материала - это явление, возникающее при многократном и частом экспонировании фоторецептора. Усталость материала может возникать и при засветке солнечным светом (пользователь вытащил картридж и оставил его на солнце барабаном вверх). Усталость материала приводит к увеличению скорости темновой утечки заряда, а в некоторых случаях наоборот к сохранению заряда на поверхности после экспонирования.
  • Устойчивость к внешним воздействиям - эта характеристика определяет способность фотопроводника сохранять свои свойства как можно дольше при механическом контакте с бумагой. Бумага, при правильном использовании аппарата, является наиболее важным фактором естественного износа фоторецептора. Поэтому шероховатая бумага, неправильно обрезанная и т.д. сокращает срок службы фоторецептора. Хотя сама бумага практически не контактирует с фоторецептором, однако жесткие волокна бумаги могут попадать под ракельный нож. Кроме того, срок его службы сокращают различные химические вещества, которые могут попасть на него с бумаги или с другого источника, а также механические повреждения.
  • Кристаллизация - процесс преобразования атомов фотопроводника из аморфной структуры в упорядоченную, кристаллическую. При этом фотопроводник теряет свои свойства. Такой процесс нельзя остановить, но можно замедлить при правильном обращении с проводником.
  • Начальный потенциал - это потенциал на поверхности фоторецептора, при котором накапливаемый заряд равен заряду, утекающему в подложку. Обычно фоторецептор заряжают до потенциала ниже начального, чтобы избежать его повреждения.
  • Остаточный потенциал - потенциал, который остается на освещенных участках фоторецептора после экспонирования. При экспонировании фоторецептор быстро теряет заряд до определенной величины, затем скорость утекания заряда значительно снижается. Высокий остаточный потенциал способствует притягиванию частиц тонера на освещенные участки, что приводит к фону на копии.

Технология изготовления фоторецепторов

Фоторецепторы обычно наносятся на алюминиевый полый цилиндр. В  качестве фоторецептора служил либо селен и его соединения, либо органические соединения (подложка).

Органический фоторецептор двухслойный. Первый слой - слой, в котором осуществляется перенос заряда, под ним - слой в котором генерируется заряд. За ним идет тонкий слой оксидной пленки, который предотвращает утекание заряда в подложку. Подложка - последний алюминиевый слой.

Селеновый фоторецептор состоит из "ловушечного слоя", представляющего собой естественную оксидную пленку. Этот слой уменьшает скорость темновой утечки заряда. За ним идет фотопроводящий слой, алюминиевая оксидная пленка и подложка.

Существует два вида фоторецепторов: ленточные и цилиндрические. Первые обычно используются в аппаратах с очень высокой скоростью, поскольку позволяют обеспечивать более высокую скорость экспонирования.

Процесс ксерографии

Зарядка

Зарядка фоторецептора - это процесс  нанесения равномерного заряда определенной величины на поверхность фоторецептора. Зарядка производится коротроном. Существует несколько их видов, которые мы рассмотрим ниже.

Для зарядки на коротрон подается высокий потенциал с помощью  высоковольтного блока. Между коротроном и фоторецептором образуется разность потенциалов в несколько киловольт, что приводит к ударной ионизации воздуха (коронный разряд) и ионы накапливаются на поверхности фоторецептора. Часть электронов с заземленной подложки стекает на землю, при этом в материале подложки, вблизи границы с фотопроводником возникает избыточный заряд, противоположный заряду на поверхности фоторецептора. Экран коротрона заземляют, чтобы разность потенциалов между фоторецептором и коронной проволокой не уменьшалась, поскольку эта разность должна превышать пороговое напряжение короны (напряжение, ниже которого не возникает коронный разряд).

Виды коротронов:

  • Обычный коротрон представляет собой тонкую проволоку из устойчивого к окислению материала, натянутую на металлическом экране. При загрязнении или окислении проволоки происходит ухудшение качества копии. При загрязнении экрана возможно проскакивание искры между экраном и коротроном, что приводит к необратимому выгоранию фоторецептора.
  • Скоротрон - зарядное устройство, позволяющее получить более равномерный заряд поверхности фоторецептора. В нем кроме проволоки используется сетка, на которую также подается напряжение.
  • Дикоротрон - позволяет еще более точно регулировать величину заряда. Он состоит из двух активных элементов: коронода и экрана. На коронод подается переменное напряжение порядка 5-6 кВ, а на экран - постоянное 1-3 кВ. Про этом положительные ионы перемещаются от коронода к экрану, а отрицательные - к фоторецептору.

Коротрон служит источником характерного запаха озона, исходящего от копировального аппарата во время работы. Следует  отметить, что при использовании хороших фильтров и их своевременной замене запах не ощущается. В настоящее время фирмы-произвотели переходят на безозоновую технологию.

Формирование изображения

После зарядки на фоторецептор подается изображение, которое в копировальных аппаратах освещается мощным источником света и проецируется через систему зеркал. Обычно для освещения оригинала используется каретка с лампой как в сканерах, однако в машине Xerox 1075 (с ленточным фоторецептором) например используется лампа-вспышка, которая освещает весь оригинал сразу. Для увеличения и уменьшения изображения служит объектив с изменяемым фокусным расстоянием. Скорость барабана и каретки должна быть согласована. Изображение со стекла экспонирования освещается лампой и через систему зеркал проецируется на фоторецептор. Те места на фоторецепторе, на которые падает свет теряют свой потенциал. Таким образом на фоторецепторе остается рисунок оригинала в виде заряженных участков.

По способу формирования изображения  аппараты можно разделить на аппараты с подвижным столом, где оригинал вместе со стеклом экспонирования перемещается относительно источника света, неподвижным столом, где существует каретка и система зеркал (либо сканер) и аппараты с лампой-вспышкой, в которой весь оригинал освещается сразу. На широкоформатных копировальных аппаратах используется протяжка оригинала относительно стекла экспонирования и источника света.

Принцип действия каретки здесь  описан не будет, поскольку наша статья посвящена теории и практике ксерографической печати.

Экспонирование

На этапе экспонирования на поверхности  фоторецептора получается скрытое  электростатическое изображение. Рассмотрим этот процесс более подробно.

До начала экспонирования поверхностный  заряд фоторецептора удерживается на месте за счет взаимодействия с зарядом противоположного знака, находящегося на границе заземленной подложки и фоторецептора.

До попадания света на фотопроводящий слой количество свободных носителей  зарядов в нем мало, а удельное сопротивление - велико. Фактически электроны в фотопроводнике после зарядки смещаются из равновесного положения, но они еще находятся в своих молекулах. Такое смещение положительных и отрицательных зарядов в молекуле называется поляризацией.

Рассмотрим упрощенную модель процесса, который происходит при освещении фоторецептора. Будем считать, что фоторецептор заряжен положительным зарядом.

При попадании света на фотопроводник  в нем происходит генерация свободных  носителей заряда. Электрон той молекулы, которая расположена ближе к  поверхности слоя перемещается по направлению к положительном иону на поверхности. Это перемещение нейтрализует часть положительных ионов на поверхности. В то же время молекула в верхнем слое остается положительно заряженной. Отсутствие электронов в молекуле называют "дыркой". Тип проводимости, при котором основными носителем заряда являются дырки называют дырочной. При дырочной проводимости происходит перемещение электронов из одного атома в соседний. Результатом этого является перемещение положительных зарядов - дырок - в направлении, противоположном движению электронов.

После попадания света на фоторецептор электростатическое поле на поверхности  фотопроводника изменяется. Оно действует  уже не между зарядом на поверхности  фоторецептора и подложкой, а  межу "верхней" молекулой и подложкой.

Электроны, находящиеся снизу от "верхней" молекулы, немедленно реагируют  на положительный заряд и начинают перемещаться к "верхней" молекуле, чтобы нейтрализовать часть возникшего заряда. Миграция электронов приводит к тому, что положительный заряд от "верхней" молекулы переходит к молекуле из следующего, "второго" слоя молекул фотопроводника.

При этом электростатическое поле возникает  между молекулой "второго" слоя и подложкой. Дырка соответственно перемещается от "верхней" молекулы к молекуле из "второго" слоя. Процесс повторяется до тех пор, пока дырка не перейдет к молекуле фотопроводника, ближайшего к подложке. В этом случае электроны перемещаются от подложки к фотопроводнику, чтобы нейтрализовать положительный заряд.

Проявление

Проявление - это процесс формирования изображения на фоторецепторе тонером.

Тонер представляет собой мелкодисперсный  порошок, частицы которого состоят  из полимера или резины и красящего  вещества (для черного тонера обычно используется сажа).

Возможны два варианта проявления - однокомпонентное и двухкомпонентное. Рассмотрим вначале двухкомпонентный способ.

Двухкомпонентный способ используется только в случае отрицательной зарядки  фоторецептора.

Тонер из бункера через специальное  дозирующее устройство подается в бункер с носителем. Носитель (девелопер) представляет собой частицы магнитного материала, покрытого полимером.

Прилипание тонера к носителю происходит за счет трибоэлектризации (электризации трением). В процессе трения частицы  тонера и носителя приобретают различные заряды и тонер равномерно покрывает носитель.

Носитель в свою очередь прилипает  к магнитному валу, который представляет собой полый вал с постоянными  магнитами внутри. Вал, покрытый носителем  с тонером входит в непосредственный контакт с фоторецептором, в результате чего частицы тонера, имеющие заряд, противоположный заряду фоторецептора притягиваются к его заряженным участкам.

Чистый носитель с остатками  тонера вновь попадает в бункер. Носитель вновь смешивается с  тонером и попадает на магнитный вал. Сам носитель не расходуется в процессе проявки. Однако в результате трения носитель теряет полимерный слой, что приводит к его неспособности притягивать тонер. Кроме того, такой носитель может вызывать механическое повреждение фоторецептора.

Для того, чтобы тонер не переносился  на слабозаряженные участки фоторецептора  на магнитный вал подается напряжение смещения порядка 100-500 В, знак которого совпадает со знаком заряда на фоторецепторе. За счет этого сила притяжения тонера к валу увеличивается и тонер не переносится на слабозаряженные участки. Регулируя величину напряжения смещения можно регулировать насыщенность копии, например для создания хорошей копии с плохого оригинала. Современные аппараты обычно сами достаточно хорошо регулируют качество копии, практически не требуя вмешательства оператора.

Информация о работе Принтеры, копиры и плоттеры