Автор работы: Пользователь скрыл имя, 21 Мая 2013 в 17:44, реферат
Системный анализ со временем стал меж- и наддисциплинарным курсом, обобщающий методологию исследования сложных технических и социальных систем.
С ростом населения на планете, ускорением научно-технического прогресса, угрозой голода, безработицы и различных экологических катастроф, становится все более важным применение системного анализа.
К примеру, ван Гиг [4] дает достаточно краткое определение:
Система - совокупность или
множество связанных между
Постепенно развивая это понятие, он определяет систему как совокупность живых или неживых элементов, либо и тех и других вместе.
В конечном итоге он дает два варианта определения:
Система - совокупность частей
или компонентов, связанных между
собой организационно. При выходе
из системы части системы
Под системой может пониматься естественное соединение составных частей, самостоятельно существующих в природе, а также нечто абстрактное, порожденное воображением человека.
Данные как определения, приведенные выше постулаты, на мой взгляд, следует отнести к свойствам систем, хотя и очень важным.
А.И. Уемов, проводя анализ тридцати пяти (!) различных определений понятия “система”, останавливается на следующих:
Система - множество объектов,
на котором реализуется
Система - множество объектов, которые обладают заранее определенными свойствами с фиксированными между ними отношениями [1] .
Эти определения, несмотря на краткость достаточно полны, однако слишком тяжелы для восприятия.
Мне представляется интересным определение Р. Эшби:
Система - любая совокупность переменных, которую наблюдатель выбирает из числа переменных, свойственных реальной “машине”.
Однако это определение характерно описанной выше ситуацией: оно хорошо для кибернетика, но инженера, или, скажем, психолога оно удовлетворит не в полной мере.
Наилучшим из встреченных мною, я считаю определение Акоффа и Эмери:
Система - множество взаимосвязанных элементов, каждый из которых связан прямо или косвенно с каждым другим элементом, а два любые подмножества этого множества не могут быть независимыми [5].
Это определение достаточно полно, подходит для специалистов различных областей и легко воспринимается.
Свойства области
Живые и неживые системы
Живыми называются системы, обладающие биологическими функциями, такими, как рождение, смерть и воспроизводство. Иногда понятия “рождение” и “смерть” связывают с неживыми системами при описании процессов, которые как бы похожи на жизненные, но не характеризуют жизнь в ее биологическом смысле.
Абстрактные и конкретные системы
По определению Акоффа и Эмери [5], система называется абстрактной, если ее элементы являются понятиями. Систему относят к конкретным, если по крайней мере два ее элемента являются объектами. Дж. ван Гиг дополняет эти определения, назвав систему конкретной, если ее элементы являются либо объектами, либо субъектами, либо и теми и другими. Это не лишает общности определение Акоффа. Все абстрактные системы являются неживыми, в то время как конкретные системы могут быть и живыми, и неживыми.
Открытые и замкнутые системы
Деление систем на открытие и замкнутые является важным основанием классификации систем. Система является замкнутой, если у нее нет окружающей среды, т. е. внешних контактирующих с ней систем. К замкнутым относятся и те системы, на которые внешние системы не оказывают существенного влияния. Примером замкнутой системы может служить часовой механизм. Система называется открытой, если существуют другие, связанные с ней системы, которые оказывают на нее воздействие и на которые она тоже влияет. Различие между открытыми и замкнутыми системами является основным моментом в понимании фундаментальных принципов ОТС. Всякая попытка рассмотрения открытых систем как замкнутых, когда внешняя среда не принимается во внимание, таит в себе большую опасность, которую необходимо полностью осознать.
Все живые системы - открытые системы. Неживые системы являются относительно замкнутыми; наличие обратной связи наделяет их некоторыми неполными свойствами живых систем, связанными с состоянием равновесия.
Элемент
Элемент - представляет собой далее не делимый компонент системы при данном способе расчленения [2].
При определении этого понятия нет такого большого количества мнений, как в случае с понятием “система”. Все авторы дают сходные определения, но при этом часто говорят, что элементы могут в свою очередь представлять собой системы, т. е. быть подсистемами. Даже более того, чаще всего так оно и бывает. Поэтому для системоаналитика при анализе организации (составлении модели) большого труда стоит разбить цельную систему на конечное число элементов, чтобы избежать излишней сложности и не потерять в адекватности модели.
Ван Гиг, классифицируя элементы, делит их на живые и неживые, входные и выходные [4]. Различие между входными элементами и ресурсами очень незначительно и зависит лишь от точки зрения и условий. В процессе преобразования входные элементы - это те элементы, которые потребляют ресурсы. Определяя входные элементы и ресурсы систем, важно указать, контролируются ли они проектировщиком системы, т. е. следует их рассматривать как часть системы или как часть окружающей их среды (см. раздел ниже). При оценке эффективности системы входные элементы и ресурсы обычно относят к затратам. Выходные элементы представляют собой результат процесса преобразования в системе и рассматриваются как результаты, выходы или прибыль.
Окружающая среда
Окружающую среду можно
в некоторой степени
Структура
Понятие структуры связано с упорядоченностью отношений, которые связывают элементы системы. “Чтобы получить велосипед, недостаточно получить “ящик” со всеми его деталями. Необходимо еще правильно соединить детали между собой”[3].
Перегудов и Тарасенко определяют структуру системы как совокупность необходимых и достаточных для достижения цели отношений между элементами [3].
Акофф и Эмери говорят о структуре как об очень общем понятии, включающем геометрические, кинематические, механические и морфологические аспекты [5].
Структура может быть простой или сложной в зависимости от числа и типа взаимосвязей между частями системы. В сложных системах должна существовать иерархия, т. е. упорядочение уровней подсистем, частей и элементов. От типа и упорядоченности взаимоотношений между компонентами системы в значительной степени зависят функции систем и эффективность их выполнения.
Организация
Организация является характеристикой систем, которая не тождественна сложности структуры.
Акофф и Эмери определяют организацию как “по крайней мере частично самоуправляемую систему”, наделенную следующими характеристиками.
Сущность. Организации являются системами типа “человек - машина”.
Структура. Система должна обладать способностью выбирать направления деятельности, ответственность за которую может быть распределена между элементами системы на основе их функций (торговля, производство, проведение расчетов и т. д.), местоположения или других признаков.
Коммуникация. Коммуникация играет важную роль в определении поведения и взаимодействия подсистем в организации.
Выбор решений. Участники должны распределить между собой задачи и соответствующие направления деятельности [5].
Ван Гиг называет организации системами более высокого порядка, чем остальные живые системы, поскольку они отличаются большей сложностью и сознательно движутся в направлении выбранной ими цели. Системы низкого уровня организации имеют меньшую сложность и их цели определяются внешней средой или другими системами.
Общая теория систем провела грань (и это является ее заслугой) между теорией неживых систем, к которым применим механистический подход, и теорией живых систем, для которых требуется нечто другое.
Модель
Модель - некий объект-заместитель, который в определенных условиях может заменять объект-оригинал, воспроизводя интересующие нас свойства и характеристики оригинала, причем имеет существенные преимущества удобства. Модель можно также определить как способ существования знаний.
В результате деятельности математиков, логиков и философов была создана теория моделей. Согласно ей модель - это результат отображения одной абстрактной материальной структуры на другую, также абстрактную, либо результат интерпретации первой модели в терминах и образах второй [4].
Модели могут быть качественно различными, они образуют иерархию, в которой модель более высокого уровня (например, теория) содержит модели нижних уровней (скажем, гипотезы) как свои части, элементы.
Целесообразная деятельность невозможна без моделирования. Сама цель уже есть модель желаемого состояния. И алгоритм деятельности - также модель этой деятельности, которую еще предстоит реализовать.
Энтропия, неопределенность и информация
Энтропией называется степень
неупорядоченности. В термодинамике,
откуда заимствовано это понятие, энтропия
связывается с вероятностью возникновения
определенного расположения молекул.
В кибернетике и ОТС энтропия
означает величину разнообразия системы,
где под разнообразием
а) обработка информации приводит к соответствующему уменьшению положительной энтропии;
б) получение энергии из внешней среды (увеличение отрицательной энтропии) противодействует ослабевающим тенденциям неотвратимого естественного процесса (увеличению положительной энтропии) [7].
Обратная связь
Управляющий механизм любой системы, будь это рулевое управление автомобиля, или социо-техническая система, основан на принципе подачи выходного сигнала обратно на вход. Существует положительная и отрицательная обратная связь. Положительная обратная связь обычно приводит к неустойчивым состояниям системы, тогда как отрицательная обратная связь позволяет обеспечить устойчивое управление системой.
Приведенный выше набор определений
является базовым для общей теории
систем. Без оперирования этими понятиями
невозможно ни структурирование научного
знания, ни анализ организаций. На определении
этих понятий останавливается
Основные постулаты общей теории систем.
Развитие ОТС было вызвано необходимостью дополнить концептуальные схемы, известные под названием аналитико-механистического подхода и связанные с науками о неживой природе. Определение “механистический” используется, по-видимому, потому, что в них господствующими были законы механики Ньютона. Их называют, кроме того, “аналитическими”, так как они основаны на принципах анализа: от целого к частям и от более сложного к более простому. Схемы являются также дедуктивными, т. е. используется переход от общего к частному.
С помощью таких подходов
можно правильно объяснить
Аналитико-механистическим подходам свойственны следующие недостатки:
Они не могут дать объяснения сущности таких понятий, кик организация, самосохранение, регулирование, характеризующих живые системы.
Аналитический метод непригоден для изучения систем, которые должны рассматриваться неделимыми: существование неделимых целых делает разложение на составные части бессмысленным или невозможным. Важным предположением аналитико-механистического подхода является тот факт, что свойства всей системы не могут быть выведены из свойств ее частей.
Механистические теории были построены не для изучения сложных организованных систем со сложными структурами и сильными взаимосвязями, а с другой целью.
Системный подход - это принцип исследования, при котором рассматривается система в целом, а не ее отдельные подсистемы. Его задачей является оптимизация системы в целом, а не улучшение эффективности входящих в нее подсистем.
Цель ОТС заключается в построении концептуальной и диалектической основы для развития методов, пригодных для исследования более широкого класса систем, чем те, которые связаны с неживой природой. Общая теория систем лишена отмеченных выше недостатков и обладает следующими достоинствами:
Информация о работе Системный анализ и его значение для науки и практики