Создание и развитие статистики нечисловых данных в России

Автор работы: Пользователь скрыл имя, 10 Сентября 2013 в 08:11, контрольная работа

Описание работы

Цель данной работы – изучить создание и развитие статистики нечисловых данных в России.
Исходя из цели, можно выделить следующие задачи:
- рассмотреть статистику нечисловой природы как часть прикладной статистики;
- выделить структуру нечисловой статистики,

Содержание работы

Введение 3
1. Статистика объектов нечисловой природы как часть прикладной статистики 4
2. Основные идеи статистики объектов нечисловой природы 8
Заключение 12
Список использованной литературы 13

Файлы: 1 файл

МПУР.doc

— 78.00 Кб (Скачать файл)

Статистические  методы анализа нечисловых данных особенно хорошо приспособлены для применения в экономике, социологии и экспертных оценках, поскольку в этих областях от 50% до 90% данных являются нечисловыми.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение

 

Развитие статистики нечисловых данных во многом стимулировалось запросами теории и практики экспертных оценок. 

Статистика  нечисловых данных - это направление  в прикладной статистике, в котором  в качестве исходных статистических данных (результатов наблюдений) рассматриваются  объекты нечисловой природы. Так принято называть объекты, которые нецелесообразно описывать числами, в частности элементы нелинейных пространств. Примерами являются бинарные отношения (ранжировки, разбиения, толерантности и др.), результаты парных и множественных сравнений, множества, нечеткие множества, измерение в шкалах, отличных от абсолютных. Этот перечень примеров не претендует на законченность. Он складывался постепенно, по мере того, как развивались теоретические исследования в области статистики нечисловых данных и расширялся опыт применений этого направления прикладной статистики.

Объекты нечисловой природы широко используются в теоретических  и прикладных исследованиях по экономике, менеджменту и другим проблемам  управления, в частности управления качеством продукции, в технических науках, социологии, психологии, медицине и т.д., а также практически во всех отраслях народного хозяйства. 

В данной работе сделана попытка раскрыть теоретическую  основу вопроса.  Очевидно, что из-за чрезмерной обширности данной темы невозможно подробно рассмотреть в одной работе все стороны этой проблемы. Однако, исходя из всего вышесказанного, мы в заключении сделали некоторые выводы, обобщая анализ рассмотренного вопроса.

 

 

 

Список использованной литературы

 

  1. Дэвид Г. Метод парных сравнений. - М.: Статистика, 2007. - 144 с.
  2. Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений. - М.: Мир, 2006. - 168 с.
  3. Кемени Дж., Снелл Дж. Кибернетическое моделирование: Некоторые приложения. - М.: Наука, 2006. - 192 с.
  4. Кендалл М., Стьюарт А. Теория распределений. - М.: Наука, 1966. - 566 с.
  5. Кендалл М., Стьюарт А. Статистические выводы и связи. - М.: Наука, 1973. - 899 с.
  6. Кендалл М., Стьюарт А. Многомерный статистический анализ и временные ряды. - М.: Наука, 1976. - 736 с.
  7. Крамер Г. Математические методы статистики. - М.: Мир, 2006. - 648 с.
  8. Литвак Б.Г. Экспертная информация: Методы получения и анализа. - М.: Наука, 2009. - 184 с.
  9. Матерон Ж. Случайные множества и интегральная геометрия. - М.: Мир, 1978. - 318 с.
  10. Менеджмент в техносфере. Учебное пособие (совместно с В.Н. Федосеевым). – М.: Академия, 2008. – 384 с.
  11. Орлов А.И. Статистика объектов нечисловой природы и экспертные оценки. - В сб.: Экспертные оценки. Вопросы кибернетики. Вып.58. - М.: Наука, 2007. С.17-33.
  12. Перекрест В.Т. Нелинейный типологический анализ социально-экономической информации: Математические и вычислительные методы. - Л.: Наука, 2009. - 176 с.
  13. Пфанцагль И. Теория измерений. - М.: Мир, 2006. - 166 с.
  14. Смоляк С.А., Титаренко Б.П. Устойчивые методы оценивания: Статистическая обработка неоднородных совокупностей. – М.: Статистика, 2010. - 208 с.
  15. Суппес П., Зинес Дж. Основы теории измерений. - М: Мир,2007. С. 9-110.
  16. Терехина А.Ю. Анализ данных методами многомерного шкалирования. - М.: Наука, 2008. - 168 с.
  17. Тюрин Ю.Н., Литвак Б.Г., Орлов А.И., Сатаров Г.А., Шмерлинг Д.С. Анализ нечисловой информации. - М.: Просвещение, 2011. – 180 с.
  18. Управление промышленной и экологической безопасностью: Учебное пособие (совместно с В.Н. Федосеевым, В.Г. Ларионовым, А.Ф. Козьяковым). - М.: УРАО, 2002 (1-е изд.), 2003 (2-е изд.). – 220 с.
  19. Эконометрика. Учебник. – М.: Экзамен, 2002 (1-е изд.), 2003 (2-е изд.). – 576 с.
  20. Эфрон Б. Нетрадиционные методы многомерного статистического анализа. - М.: Финансы и статистика, 2008. - 263 с.

Информация о работе Создание и развитие статистики нечисловых данных в России